
Product Knowledge Template

Overview

Conventions

What's New?

Getting Started

Creating a PowerCopy

Basic Tasks

Managing PowerCopies
Saving a PowerCopy in a Catalog
Instantiating a PowerCopy
Storing a Design Table in a PowerCopy
PowerCopies: Useful Tips
To know more about PowerCopies...

Managing User Features
Introducing the UserFeature Definition window
Creating a User Feature
Creating and Instantiating a NLS User Feature (UDF)
Saving a User Feature into a Catalog
Instantiating a User Feature
Assigning a Type to a User Feature
Referencing User Features in Search Operations
User Features: Useful Tips
User Features: Limitations
To know more about User Features ...

Managing Part and Assembly Templates
Introducing the Document Template Definition Window
Creating a Part Template
Instantiating a Part Template
Adding an External Document to a Document Template
Document Templates: Methodology
To know more about Part and Assembly Templates...

To Know More about the Insert Object Dialog Box ...
Interactive Templates Quick Reference

Advanced Tasks

Working with the Scripting Language
Creating a Script
Starting from a Script Skeleton
Generating a Document from a Script
Using the Generative Script Language: Overview

Script Structure

Object Properties
Comments
Operators
Keywords

import Keyword
let Keyword
In Keyword
publish Keyword
Input Keyword
from Keyword
context Keyword
isa Keyword

Variables
Limitations
Generative Script Objects
Using the Generative Knowledge Commands

Specifying a Context
Declaring Input Data
Reusing Input Data: the let Keyword
Tips and Tricks

About Generic Naming
Message: "property does not exist"
Message: "feature could not be updated"
How to Specify a File Path (three methods)
The Rectangular Pattern is not Generated
Importing Sketches: Recommendation
Specifying Strings: Recommendation

Use Cases
The Tow Hook
The Ladder
The Pocket Calculator

References

Using the Object Browser
Basic Wireframe Package

GSMCircle Object
GSMLine Object
GSMPlane Object
GSMPoint Object

Part Design
Part Shared Package

Fillet Object
ConstantEdgeFillet Object
Pattern Object

Standard Package
GSD Shared Package
GSD Package
Knowledgeware Expert
Mechanical Modeler

Product Knowledge Template Interoperability

ENOVIA VPM V5 Interoperability
Optimal CATIA PLM Usability for Product Knowledge Template
Working with Assembly Templates in ENOVIA VPM V5
Saving and Using Assembly Templates in ENOVIA VPM V5
Working with Assembly Templates in ENOVIA LCA Using VPM Navigator
Instantiating a Part Template From ENOVIA VPM V5 Using the Document Chooser

ENOVIAVPM Interoperability
Working with Assembly Templates in ENOVIAVPM

Workbench Description

Product Knowledge Template Menu Bar
Generative Knowledge Toolbar
Templates Creation Toolbar
Templates Instantiation Toolbar

Customizing for Product Knowledge Template

Knowledge
Language
Report Generation
Part Infrastructure for Knowledgeware Applications

Glossary

Index

Overview
This book is intended for the user who needs to become quickly familiar with Product Knowledge Template.

This overview provides the following information:

● Product Knowledge Template in a Nutshell

● Before Reading this Guide

● Getting the Most out of this Guide

● Accessing sample documents

● Conventions Used in this Guide

Product Knowledge Template in a Nutshell

Interactive Creation of intelligent Product Knowledge Templates
The encapsulation of feature, part and assembly specifications of any level of complexity within Product

Knowledge Template allows the capture of the design methodology defined interactively in CATIA, as well
as the reuse across the extended enterprise. Templates can be extracted from existing features, part and
assembly designs or created specifically. They can contain not only geometry, but also any associated
parameters or relations, including embedded intelligence of design rules, design tables and checks, providing
the ability to encapsulate the specifications of sophisticated adaptive features.

Editing and maintaining the Product Knowledge Templates
The management of captured knowledge is easier thanks to the ability to edit and maintain templates in the
same interactive way as modifying any CATIA part design (no programming skills required). This allows the
templates to be adapted to the changing requirements of the organization, to accommodate improved
methodologies or customer requirements.

Storing of Product Knowledge Templates in CATIA Catalogs for re-use
Once defined Product Knowledge Templates can be stored in CATIA Catalogs to allow easy access and
management for reuse across the extended enterprise.

Using scripting templates for a powerful solution
CATIA Product Knowledge Templates provides a scripting language enabling full design specification and
generation. Using a simple and declarative language, the user can describe - in text format - geometric
specifications, transformation and positioning specifications (including assembly constraints), and knowledge
specifications.
Moreover, in order to make the creation of scripts still simple, powerful Knowledge Templates can be used as
any script objects.
Product Knowledge Template 2 provides the ability to easily and interactively capture engineering know-how
and methodology for highly efficient reuse, helping the organization to share best practices and avoid
duplication of effort through inability to reuse existing designs.

Before Reading this Guide

Before reading this guide, you should be familiar with basic Version 5 concepts such as document windows,
standard and view toolbars. Therefore, we recommend that you read the Infrastructure User's Guide that
describes generic capabilities common to all Version 5 products. It also describes the general layout of V5 and
the interoperability between workbenches.

Getting the Most out of this Guide
To get the most of this guide, we suggest that you start performing the step-by-step Getting Started tutorial.

Once you have finished, you should move on to the Basic and Advanced Tasks sections.

The Workbench Description section, which describes the PKT workbench, and the Customizing section, which

explains how to set up the options, will also certainly prove useful.

Accessing sample documents
To perform the scenarios, you will be using sample documents contained in either the online/pktug/samples

folder.

For more information about this, please refer to Accessing Sample Documents in the Infrastructure User's

Guide.

Conventions Used in this Guide

To learn more about the conventions used in this guide, refer to the Conventions section.

file:///E|/www/meidocr14/Doc/online/basug_C2/basugbt0208.htm

Conventions
Certain conventions are used in CATIA, ENOVIA & DELMIA documentation to help you recognize and understand
important concepts and specifications.

Graphic Conventions

The three categories of graphic conventions used are as follows:

● Graphic conventions structuring the tasks

● Graphic conventions indicating the configuration required

● Graphic conventions used in the table of contents

Graphic Conventions Structuring the Tasks

Graphic conventions structuring the tasks are denoted as follows:

This icon... Identifies...

estimated time to accomplish a task

a target of a task

the prerequisites

the start of the scenario

a tip

a warning

information

basic concepts

methodology

reference information

information regarding settings, customization, etc.

the end of a task

functionalities that are new or enhanced with this release

allows you to switch back to the full-window viewing mode

Graphic Conventions Indicating the Configuration Required

Graphic conventions indicating the configuration required are denoted as follows:

This icon... Indicates functions that are...

specific to the P1 configuration

specific to the P2 configuration

specific to the P3 configuration

Graphic Conventions Used in the Table of Contents

Graphic conventions used in the table of contents are denoted as follows:

This icon... Gives access to...

Site Map

Split View mode

What's New?

Overview

Getting Started

Basic Tasks

User Tasks or the Advanced Tasks

Workbench Description

Customizing

Reference

Methodology

Glossary

Index

Text Conventions

The following text conventions are used:

● The titles of CATIA, ENOVIA and DELMIA documents appear in this manner throughout the text.

● File -> New identifies the commands to be used.

● Enhancements are identified by a blue-colored background on the text.

How to Use the Mouse

The use of the mouse differs according to the type of action you need to perform.

Use this
mouse button... Whenever you read...

● Select (menus, commands, geometry in graphics area, ...)

● Click (icons, dialog box buttons, tabs, selection of a location in the document window,
...)

● Double-click

● Shift-click

● Ctrl-click

● Check (check boxes)

● Drag

● Drag and drop (icons onto objects, objects onto objects)

● Drag

● Move

● Right-click (to select contextual menu)

What's New?

Enhanced Functionality

3D PLM Integration
Document Chooser integration and support of DLNames

You can now customize the document environment in order to select documents or paths using various
interfaces (folder, SmarTeam, ENOVIA, and so on). The interface can be customized for a folder or DLName
path selection interface. To get an example, see: Instantiating a Part Template From ENOVIA VPM V5 Using the
Document Chooser.

Getting Started

Creating a PowerCopy

Creating a PowerCopy

This task shows how to create PowerCopy elements, to be reused later.

A PowerCopy is a set of features (geometric elements, formulas, constraints and so forth) that are
grouped in order to be used in a different context, and presenting the ability to be completely
redefined when pasted.

Before carrying out the scenario, make sure that the Parameters and Relations options are
checked (Tools->Options->Infrastructure->Part Infrastructure->Display).

1. Open the PktCreatePowerCopy.CATPart document. The following image displays:

2. From the Start->Knowledgeware menu, access the Product Knowledge Template

workbench.

3. Click the Create a PowerCopy icon () . The PowerCopy Definition dialog box displays.

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktCreatePowerCopy.CATPart

4. Select the elements making up the PowerCopy from the specification tree. For the purposes

of our scenario, select the following items:

❍

The Parameters

❍

The Relations

❍

Line.1 (under Geometrical set)

❍

The Geometry

The dialog box is automatically filled with information about the selected elements.

5. Define the PowerCopy as you wish to create it:

❍
The Definition tab lets you assign a name to the PowerCopy and presents its

components in the 3D viewer. For example, enter "Driver" in the Name: field.

❍
The Inputs tab shows you the inputs (elements to select at instantiation) of the

PowerCopy. You can rename these elements for a clearer definition by selecting

them in the viewer and entering a new name in the Name: field. In parentheses

you still can read the elements' default name based on its type. For example,

select xy plane and rename it as "Plane1".

❍
The Parameters tab lets you define which of the parameter values used in the

PowerCopy you will be able to modify at instantiation time. This can be a value,

or a formula for example.

Simply select the parameters and check the Published button. In case of a

formula, you can set it to false or true. For example, select Driver_X_Position.

Use the Name field to give another name to this element. For example, enter

X_Position and publish it.

❍
The Documents tab shows the complete path and role of Design tables

referenced by an element included in the PowerCopy.

❍
The Icon tab lets you modify the icon identifying the PowerCopy in the

specifications tree. A subset of icons is available from the Icon choice button. If

you click ... the Icon Browser opens, showing all icons loaded on your CATIA

session. Click the envelope icon .

The Grab screen button lets you capture an image of the PowerCopy to be

stored with its definition. Click the Grab screen button. You can zoom in or out

the image to adjust it. Click the Remove preview button if you do not need this

image.

6. Click OK to create the PowerCopy. Save your file. Click here to open the created file.

Refer to the Quick Reference topic for a comprehensive list of the interactions that can be carried
out on PowerCopies.

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktCreatedPowerCopy.CATPart

Basic Tasks
Managing PowerCopies
Managing User Features

Managing Part and Assembly Templates
To Know More about the Insert Object Dialog Box ...

Interactive Templates Quick Reference

Managing PowerCopies

Refer to the Quick Reference topic for a comprehensive list of interactions to be carried out on
PowerCopies.

Create PowerCopies: Select the Insert -> Advanced Replication Tools -> PowerCopy Creation

command or click the Create a Power Copy icon (), select the elements making up the PowerCopy
from the specification tree, define a name for the PowerCopy and its reference elements then choose an
icon for identifying it.
Instantiate PowerCopies: Select the Insert -> Instantiate From Document command or click the

Instantiate from Document icon (), select the document or catalog containing the PowerCopy,
complete the Inputs within the dialog box selecting adequate elements in the geometric area or in the
specification tree.
Save PowerCopies into a Catalog: Select the PowerCopy from the specification tree, select the Insert ->
Advanced Replication Tools -> PowerCopy Save In Catalog... command, enter the catalog name
and click Open.

Creating a PowerCopy
Saving a PowerCopy in a Catalog

Instantiating a PowerCopy
Storing a Design Table in a PowerCopy

PowerCopies: Useful Tips
To know more about PowerCopies...

Saving a PowerCopy in a Catalog

This task shows how to store PowerCopy elements into a catalog, for later use as described in
Creating a PowerCopy.

1. Open the PktCreatedPowerCopy.CATPart file. The PowerCopy

displays below the PowerCopy node.

2. Click the Save in Catalog icon () from the standard menu bar in the PKT workbench.

The 'Catalog save' dialog box displays.

3. Click the Create a new catalog option and click the button located on the right-hand side

of the Catalog name field. The dialog box which is displayed allows you to specify a

.catalog file where to store the created PowerCopies. Enter a file name and click Open.

4. Click OK in the Catalog save dialog box.

Note that this command is also available from the Part Design and the GSD workbenches.

5. Open the catalog you have just created (File->Open from the standard menu bar). The

catalog which is displayed looks like the one below (depending on the name assigned to the

catalog):

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktCreatedPowerCopy.CATPart

The left pane displays the PowerCopy created within a tree structure. Selecting 3 inputs displays in

the right pane the characteristics of the PowerCopy.

About the Reference tab

The PowerCopy name as well as the document it originates from is displayed.

About the Keywords tab

The PowerCopy name as well as its inputs are displayed.

About the Preview tab

The icon you have associated to the PowerCopy (if any) is displayed.

About the Generative Data tab

The resolved queries: A resolved query is relevant for parts with design tables only since it aims at

storing a filtered view of the design table data.

Using the Catalog Editor

1. From the Start->Infrastructure menu, access the Catalog Editor.

2. Double-click Chapter.1 (default chapter) and click the Add Family icon. The Component

Definition Family displays.

3. Change the name of the family: Drivers and click OK.

4. Double-click the Drivers family and click the Add Component icon.

5. In the Description Definition dialog box, click the

 button, go back to the

PktCreatePowerCopy.CATPart file and select the Driver PowerCopy in the specification tree

and click OK.

6. Save your catalog and proceed to the next task: Instantiating a PowerCopy.

To know more about catalogs, see the Catia Infrastructure User's Guide.

Refer to the Quick Reference topic for a comprehensive list of the interactions that can be carried
out on PowerCopies.

Instantiating a PowerCopy

This task shows how to instantiate a PowerCopy once it has been created as described in
Creating a PowerCopy:

● from a catalog

● from a document containing a PowerCopy and

● from a selection

● The PowerCopy reference has links to the selected features. These selected features

are the components of the PowerCopy reference.

● Each instantiation of a PowerCopy reference is a copy of each of its components

(Copied Features).

● After an instantiation, there is no link between the copied features and the

reference components.

From a Catalog

1. Create an empty .CATPart file.

2. In the standard toolbar, click the Open Catalog icon (). The catalog browser is

displayed. Select the samples/PktPowercopycatalog.catalog file.

To know how to store a PowerCopy in a catalog, see Storing a PowerCopy in a
Catalog.

3. Click the icon. In the dialog box which is displayed, select the catalog which

contains the PowerCopy that you want to instantiate. Click Open to open the selected

catalog. The dialog box which is displayed next enables you to navigate through the

chapters and the families of the catalog until you can access the desired PowerCopy.

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktPowercopycatalog.catalog

● To know more about catalogs, see the Catia Infrastructure User's Guide.

● To know more about the Insert Object dialog box, click here.

4. Double-click the 'Driver' object. The Insert Object dialog box is displayed.

5. Click the Use identical name button and click OK. The PowerCopy is instantiated.

6. Click Close in the Catalog Browser when done.

From a Document

1. Open the Pktvehicle.CATPart document.

2. From the Start->Knowledgeware Menu, access the Product Knowledge Template

workbench.

3. Click the Instantiate from Document icon (). The File Selection dialog box

displays.

Note that this command is also available from the Part Design and the GSD
workbenches.

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/Pktvehicle.CATPart

4. Select the PktCreatedPowerCopy.CATPart file and click Open. The Insert Object dialog

box displays.

● Click the Use

identical name
button.

● Click OK when

done.

Click here to know
more about the
Insert Object
Dialog box.

Note that in some cases,
when instantiating a
powercopy, the replacing
element does not present
the same sub-elements as
the replaced element.
Therefore you need to
clearly indicate in a
specific dialog box, the
Replace Viewer, how to
rebuild the geometry from
the replacing element.

The PowerCopy is instantiated into the document (see picture below.)

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktCreatedPowerCopy.CATPart

From a Selection

1. Open the PktCreatedPowerCopy.CATPart and the PktVehicle.CATPart files.

2. Tile the window vertically.

3. Expand the PowerCopy node in the PktCreatedPowerCopy.CATPart file and click the

Driver PowerCopy.

4. Go to the PktVehicle.CATPart file and click the Instantiate from Selection icon

(). The Insert Object dialog box displays.

5. Click the Use identical name button. Click OK when done. The PowerCopy is

instantiated.

Refer to the Quick Reference topic for a comprehensive list of the interactions that can be
carried out on PowerCopies.

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktCreatedPowerCopy.CATPart
file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/Pktvehicle.CATPart

Storing a Design Table in a PowerCopy

This task shows how to store a design table in a power copy for later use. In this scenario, the
user wants to instantiate the inner and the outer cages of a ball bearing in a different context.
To do so, he creates a powercopy only containing the outer and the inner cages of an already
existing ball bearing.

This scenario is divided into the following steps:

● Inserting the Design Table into the CATPart file

● Creating the PowerCopy

● Instantiating the PowerCopy containing the Design Table

To carry out this scenario, the Product Knowledge Template license is required.

To carry out this scenario, you will need the following files:
● KwrBallBearing1.CATPart

● KwrBearingDesignTable.xls

To store a design table in a PowerCopy, do not forget to select the parameters pointed by the
design table.

1. Open the KwrBallBearing1.CATPart file. The following image displays.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/Advisor/KwrBallBearing1.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/Advisor/KwrBearingDesignTable.xls
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/Advisor/KwrBallBearing1.CATPart

Inserting the Design Table into the CATPart file

2. Click the Design Table icon () in the Standard toolbar. The Creation of a

Design Table dialog box displays.

3. Check the Create a design table from a pre-existing file radio button and click

OK. The File Selection dialog box displays.

4. Select the KwrBearingDesignTable.xls and click Open.

5. Click Yes when asked for automatic associations and click OK. The Design table now

displays below the Relations node.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/Advisor/KwrBearingDesignTable.xls

Creating the PowerCopy

6. From the Start->Knowledgeware menu, access the Product Knowledge

Template workbench (if need be) and click the Create a PowerCopy icon. The

Powercopy Definition dialog box displays.

7. In the Specification tree, select the following items:

❍
DesignTable.1

❍

Shaft.1

❍

Shaft.2

❍

Shaft.3

❍

Sketch.1

❍

Sketch.2

❍

Sketch.3

❍

the Material Parameter.

❍

Click OK when done. The PowerCopy displays below the PowerCopy

node in the specification tree

8. Save your file and close it.

Instantiating the PowerCopy

9. From the File->New menu, select Part in the List of Types and click OK.

10. If need be, from the Start->Knowledgeware menu, access the Product

Knowledge Template workbench and click the Instantiate From Document icon.

The File Selection dialog box displays.

11. Select the KwrBallBearing1.CATPart file and click Open. The Insert Object dialog box

displays.

12. Select the yz plane in the specification tree and click OK. The Design Table is

instantiated

PowerCopies: Useful Tips

Creating a PowerCopy

● As far as possible, minimize the number of elements making up the PowerCopy.

● When defining PowerCopies including sketches, use profiles constrained with respect to edges or

faces rather than to planes. Additionally, set the option Create geometrical constraints off before
sketching. Generally speaking, it is always preferable to use profiles both rigid and mobile.

● It is preferable to constrain elements with respect to external references such as faces, edges,

reference or explicit planes.

● It is preferable not to use projections nor intersections in your sketch if you want to use your

sketch in a PowerCopy.

● Avoid constraints defined with respect to reference planes.

● Before creating your PowerCopies, make sure that your sketch is not over-constrained.

● Make sure that your sketch is iso-constrained (green color). You can use non-iso-constrained

sketches, but it will be more difficult to understand and control the result after instantiation.

● Create sketches on an axis system, in order to better control the Sketch position.

● Avoid access to sub-elements.

● Formulas are automatically included if you select all the parameters.

● For complex design, integrate knowledge rules.

Managing inputs:

● Always rename your inputs to help the end user understand what he needs to select.

● A formula is automatically included in a Power Copy definition when all its parameters are

included.
Otherwise, i.e. if at least one parameter is not selected as part of the Power Copy, select the
formula to make it part of the definition. If you do so, all the formula parameters that have not
been explicitly selected, are considered as inputs of the Power Copy.

● Note that when including parameters sets containing hidden parameters in a PowerCopy, the

hidden parameters are automatically instantiated when instantiating the PowerCopy.

● When creating a powercopy, you may select components that point a relation. If this relation is not

activated, it will not be taken into account by the powercopy. For this relation to be inserted into
the powercopy, you have to activate it.

Preview:

● In a Part document, create only one Power Copy reference. It is not a technical restriction, but

there are at least two raisons for this: The cost of an instantiation will be smaller if the Part
document is smaller. The end user can more easily understand the feature to be instantiated.

● Put in "show" only the input and the result (to help the end user to understand what he needs to

select).

● Use color to differentiate inputs (put transparency on result for example).

● Choose a pertinent viewpoint before saving the Part document reference, default viewpoint in

preview during instantiation will be the same.

Catalog:

● Do not forget catalog integration if you want to provide several Power Copies.

Instantiating a PowerCopy

● Always check the orientation for curves and surfaces.

● If you need to instantiate a Power Copy several times on the same input, rename your inputs and

use the "Use identical name" option.

To know more about PowerCopies...
Refer to the Quick Reference topic for a comprehensive list of the interactions that can be carried out on
powercopies.

The PowerCopy command can be accessed by selecting the Insert->Advanced Replications Tools-

>PowerCopy Creation command from the following workbenches:

● Part Design

● Generative Shape Design

and by clicking the Create a PowerCopy icon () from the Product Knowledge Template workbench.

A PowerCopy is a template that works at the part level. From a collection of features (geometry, literals,
formulas, constraints, etc.), the user can create his/her own feature. The result is a Part Design feature or a
Shape Design feature that can be reused in the design of another part. The created feature can be saved in a
catalog.

Managing User Features (UDFs)

Refer to the Quick Reference topic for a comprehensive list of interactions to be carried out on user features. Refer to
To know more about User Features.

Create User Features: Select the Insert -> UserFeature -> UserFeature Creation ... command or click the Create a
UserFeature icon, select the elements making up the User Feature from the specification tree, define a name for the User
Feature and its reference elements then choose an icon for identifying it.

Instantiate User Features from Document: Select the Insert -> Instantiate From Document command, select the
document or catalog containing the User Feature, complete the Inputs within the dialog box selecting adequate elements
in the geometric area or from the specification tree.

Save User Features into a Catalog: Select the user feature from the specification tree, select the Insert -> Save in
Catalog command, enter the catalog name and click Open.

Introducing the UserFeature Definition window
Creating a User Feature

Creating and Instantiating a NLS User Feature (UDF)
Saving a User Feature into a Catalog

Instantiating a User Feature
Assigning a Type to a User Feature

Referencing User Features in Search Operations
User Features: Useful Tips
User Features: Limitations

To know more about User Features ...

file:///E|/www/meidocr14/Doc/online/pktug_C2/pktugat0035.htm

Introducing the User Feature Definition Window

The Userfeature Definition window is accessed when selecting the Insert->UserFeature->UserFeature

Creation... command or when clicking the Creates a UserFeature icon ().

Reference file: PktModifyingMainResult.CATPart

The Definition tab

The Definition tab lets you define the user feature as you wish to create it.

The Definition tab lets you assign a name to the user feature and presents its components in the viewer.

● The tree structure displayed in the Definition tab under Components differs from the structure of the
selected feature. The Body.1 object does not appear as an Assemble.1 child.

● The components displayed under Inputs of components are the features which are not aggregated
to the selected object but are required to build it. These are the inputs that will be requested at
instantiation.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktModifyingMainResult.CATPart

 The Inputs tab
● The Inputs tab shows you the inputs (elements to be selected at instantiation) of the user feature. You can

rename these elements for a clearer definition by selecting them in the viewer and entering a new name in
the Name: field. In parentheses you still can read the elements' default name based on its type. . When the
Inputs tab is selected, the user feature inputs are indicated by red arrows in the geometry area. To know
more, see Renaming an input.

The Parameters tab
● The parameters tab lets you define which of the parameter values used in the user feature you will be able

to modify at instantiation. This can be a value or a formula.
Simply select the parameters and check the Published button. Use the Name: field to give another name to
this element. To publish parameters, see Publishing parameters.

file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/cfyugudf0011.htm#Renaming an Input
file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/cfyugudf0011.htm#Publishing Parameters

The Documents tab
● The Documents tab shows the complete path and role of Design tables referenced by an element included in

the user feature. This tab exhibits no document because only design tables belonging to the selected object
are displayed. When instantiating or editing the user feature, you will be able to change the document
pointed by the internal design table.

 The Icon tab
● The icon tab lets you modify the icon identifying the user feature in the specifications tree. A subset of icons

is available from the Icon choice button. If you click ... the Icon Browser opens, showing all icons loaded on
your CATIA session.
The Grab screen button allows you to capture an image of the user feature to be stored with its definition.
Click the Grab screen button. You can zoom in or out the image to adjust it. Click the Remove preview
button if you do not need this image.

The Outputs tab
● The Outputs tab provides you with a way to define the result to be carried forward from the user feature to

another document during the instantiation process. To know more, see Modifying the Main Result.
Note that the dimension of the secondary outputs should always be inferior to the Main result.

file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/cfyugudf0011.htm#Modifying the Main Result

The Type tab
● The Type tab provides you with a way to associate a type to a user feature. You will be able to use this

type in search operations, Expert checks, and in Product Knowledge Template.

The User Type name is the one that you indicated in the Definition tab.

Instance Type: Enables you to define the name of the type.
The first box should contain a string of at least 3 characters and should be used
to enter an identifier/keyword.
It is highly recommended not to use special characters in those fields (they are
not supported.)
The string to be entered in the second box is not limited.
The third box contains the generated Instance Type name that will be see as
the type.

Manage Type
button

Enables you to access the Manage Type window where you can:
- Select the Super Type from which the type you created will inherit. It is
possible to select the MechanicalModeler, the GSD and the Part Design
packages.
- Select the package it will belong to.
- Click Create type and Close if you want to use the created type in the
current session only.
- Click Create type, Save, and Close if you want to use the created type in
another session. In this case, a Generative Script file (File field) containing the
user feature definition is created.

If you want to reuse the generated type in another Catia session, proceed as
follows:

● save the CATGScript file in the Directory indicated in the Reference
Directory for Types field (see Tools->Options->Parameters and
Measure->Language tab)

● check the Load extended language libraries check box and select the
package containing the type you created.

Creating a User Feature (UDF)

The scenario below describes in detail how to create a user feature. A first user feature has
already been created. A new user feature is now created.

Note that datums (features that cannot be calculated) cannot be inputs of user features. To
know more about the UDF limitations, click here.

1. Open the PktcreateaUDF.CATPart file. Note that this file already contains a UDF located

below the KnowledgeTemplates node.

2. From the Start->Knowledgeware menu, access the Product Knowledge Template

workbench.

3. Click the Create a UserFeature icon (). The UserFeature Definition dialog box is

displayed.

Replace the default user feature name with Pad2, then select the Assemble.2 object in

the specification tree. The dialog box looks like the one below:

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktcreateaUDF.CATPart

4. Select the Outputs tab. By default, the Assemble.2 object is displayed as the main

result.

5. Click OK in the dialog box. The Pad2 user feature is added to the specification tree.

6. Save your file.

7. Keep this document open and proceed to Saving a User Feature in a Catalog.

To know more about the user feature definition window, see Introducing the Userfeature
Definition window. Refer to the Quick Reference topic for a comprehensive list of the
interactions that can be carried out on user features.

file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/cfyugudf0011.htm

Creating and Instantiating a NLS User Feature
(UDF)

The scenario below describes how to create a NLS user feature. The following features can now
display in the user's language at instantiation:

● The input role ● The parameters (names and string
multiple values)

● The output role after the instantiation ● The update error message

In the scenario below, the input role and the parameters are NLS.

To create a NLS user feature, proceed as follows:
● Create the user feature and click the Type tab in the user feature definition window to create

the type associated to the user feature as well as the associated .CATGScript file.

● Create the CATNls file (See below).

● Close CATIA and relaunch it.

● In CATIA, open the file into which the template will be inserted.

● Instantiate the user feature.

The created CATNls file:
● Should be stored in the run-time view in the resources\msgcatalog directory.

● Should have the following name: CATTypeTypeName.CATNls. If the type name is Wheel, the
CATNls name will be: CATTypeWheel.CATNls.

● Should be structured as follows:

❍ Role1="NlsRole";

❍ Role2="NlsRole"; ...

❍ Optionally for an NLS error message: UpdateErrorMessage = "Message";

Please find below the example of a .CATGscript file and its corresponding .CATNLS file.

GSDPackage isa Package
 {
 CATWheel isa SkinFeature
 {
 NLSName = UserFeature1;
 Fill = 0 , Type : Feature ;
 `Main result` = 0 , Type : Feature
 NLSName :`Main result` ;
 Point = 0 , Type : Feature ;
 Plane = 0 , Type : Feature ;
 Configuration = 0 , Type : String ;
 Distance = 0 , Type : LENGTH ;
 Radius = 0 , Type : LENGTH ;
 }
 }

In the .CATGscript opposite, the Point, the
Plane, the Configuration, the Distance, and the
Radius are the inputs of the user feature. These
inputs will be required when instantiating the
user feature.

Point = "Input point";
Plane = "Support";
Configuration = "Distance configuration";
Configuration.Item1="Short";
Configuration.Item2="Normal";
Configuration.Item3="Long";
Distance = "Wheel distance";
Radius = "Wheel radius";
Fill = "Fill";
//For the Nls message of update error
UpdateErrorMessage = " UPDATE ERROR
MESSAGE IN ENGLISH"

The inputs of the .CATGscript file are listed in
the opposite cell along with their NLS names:
Point = "Input Point".

Note that:

● Inputs names should not contain blank
spaces.

● All NLS names are indicated between quotes
"" and are separated by ;.

● It is possible to add an error message that
will be launched if an update error occurs.

● The name of the file is:
CATTypeCATWheel.CATNls

1. From the Tools->Options menu, click Parameters and Measure, and select the

Language tab. Click the button and select the directory that will contain the types

file (.CATGScript file). Click OK when done.

2. Open the PktcreateaUDF.CATPart file. Note that this file already contains a user feature

located below the KnowledgeTemplates node.

3. From the Start->Knowledgeware menu, access the Product Knowledge Template

workbench.

4. Click the Create a UserFeature icon (). The UserFeature Definition dialog box

displays. Replace the default user feature name with NLSUDF, then click the Assemble.2

object in the specification tree. The dialog box now looks like the one below:

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktcreateaUDF.CATPart

Note that the inputs of the user feature (Point.2, point.3, and Extract.1) will be those
used in the .CATNls file.

5. Click the Parameters tab and select the `Body.2\Geometrical Set.1\Circle.2\Circle center

radius.1\Radius` parameter. Click Published Name and assign it a name:

Cylinder_Radius.

6. Assign a type to the user feature. To do so, proceed as follows:

❍ Click the Type tab.

❍ In the Instance Type field, enter UDF and Assembly, and hit the Enter
key.

❍ Click the Manage type button.

❍ In the Manage Type window, click the Create type
button. (Click the graphic opposite to enlarge it.)
The type is created as well as the associated
.CATGScript file which is saved in the directory you
previously selected (Step 1.)

❍ Click Save and Close when done.

file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/images/pktnlsudf1NLS.gif

❍ Click OK to exit the user feature definition window.

7. Save your file and Close CATIA.

8. Open a Text Editor and enter the following text to create the .CATNls file:

Point.2="Select 1st
Point";
Point.3="Select 2nd
Point";
Extract.1="Select the
surface";
Cylinder_Radius="Radius
of the UDF";

Note that Point.2, Point.3, and Extract.1 are the inputs
of the user feature.

9. Save your file under the following name: CATTypeUDFAssembly.CATNLS in the run-time

view. Close the Text Editor.

10. Open CATIA and open the PktForInstantiation.CATPart file.

11. In the PKT workbench, click the Instantiate From Document icon (). The File

Selection window displays. Select the PktcreateaUDF.CATPart file that you have just

saved and click Open. The following image displays:

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktForInstantiation.CATPart

12. Select the first point, the second point, and the surface: The user feature is instantiated.

To know more about the user feature definition window, see Introducing the User Feature
Definition window. Refer to the Quick Reference topic for a comprehensive list of the interactions
that can be carried out on user features.

file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/cfyugudf0011.htm

Saving a User Feature in a Catalog

The task below explains how to store user features in a catalog. This task is not actually a Product
Knowledge Template task, but in the context of the Product Knowledge Template product, you will have to
carry it out quite often.

You have just created two user features (Pad1 and Pad2). The main interest of user features lies in the
instantiation process whereby a user feature stored in a catalog can be reused in a document.

The PktcreatedUDF.CATPart document containing both user features should be open.

Using the Save Object in a Catalog Command

1. Click the Save object in a catalog icon () from the standard menu bar in the PKT

workbench. The 'Catalog save' dialog box displays.

Note that this command is also available from the Part Design and the GSD

workbenches.

2. Select the Create a new catalog option and click the button on the right-hand side of the Catalog

name field. The dialog box which is displayed allows you to specify a .catalog file where to store

the created user features. Enter a file name and click Open. Then click OK in the Catalog save

dialog box.

3. Open the catalog you have just created (File->Open from the standard menu bar). The catalog

which is displayed looks like the one below (depending on the name assigned to the catalog):

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktcreatedUDF.CATPart

The left pane displays the two user features created within a tree structure (Pad1 has two inputs

while Pad2 has three inputs). Selecting a user feature (3 inputs for example) displays in the right

pane the characteristics of the user feature.

About the Reference tab

The user feature name as well as the document it originates from is displayed.

About the Keywords tab

The user feature name as well as its inputs are displayed.

About the Preview tab

The icon you have associated with the user feature (if any) is displayed.

About the Generative Data tab

The resolved queries: A resolved query is relevant for parts with design tables only since it aims at

storing a filtered view of the design table data.

To know more about the Catalog Editor, see the Infrastructure User's Guide.

Using the Catalog Editor

1. From the Start->Infrastructure menu, access the Catalog Editor.

2. Double-click Chapter.1 and click the Add Family icon (). The Component Definition Family

displays.

3. Change the name of the family: Pads in this scenario and click OK.

4. Double-click the Pads family and click the Add Component () icon.

5. In the Description Definition dialog box, click the

 button, go back the PktCreateaUDF.CATPart

file and select the Pad1 user feature in the specification tree and click OK.

6. Repeat the previous step to insert the Pad2 user feature into the catalog.

7. Save your catalog and proceed to the next task: Instantiating a User Feature.

Refer to the Quick Reference topic for a comprehensive list of the interactions that can be carried out on
user features.

file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/cfyugudf0011.htm

Instantiating a User Feature

The scenario described below shows how to instantiate a user feature
● from a catalog

● from a document containing a user feature and

● from a selection

From a Catalog

1. Open the PktForInstantiation.CATPart document. The following screen displays.

2. In the standard toolbar, click the icon. The catalog browser is displayed.

3. Click the icon. In the dialog box which is displayed, select the catalog containing the user features you want

to instantiate. Click Open to open the selected catalog. The dialog box which is displayed next enables you to

navigate through the chapters and the families of the catalog until you can access the desired user feature.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktForInstantiation.CATPart

4. Double-click the '3 inputs' object and the 'Pad.2' object. The Insert Object dialog box is displayed.

To know more about the Insert Object dialog

box, click here.

Note that in some cases, when instantiating a

user feature, the replacing element does not

present the same sub-elements as the replaced

element. Therefore you need to clearly indicate

in a specific dialog box, the Replace Viewer,

how to rebuild the geometry from the replacing

element.

5. To instantiate Pad2 into the document, proceed as follows:

a. If need be, select Point.2 in the Insert Object dialog box, then select the Point.2 object in the document

geometry area or in the specification tree.

b. Select Point.3 in the Insert Object dialog box, then select the Point.3 object in the document geometry

area or in the specification tree.

c. Select Extract.1 in the Insert Object dialog box, then select the face highlighted on the graphic below.

6. Click OK to instantiate the Pad2 user feature and exit the Insert Object dialog box. The user feature Pad2 is

instantiated into the document. This is what you can see on screen.

From a Document

1. Open the PktForInstantiation.CATPart document.

2. Click the Instantiate an element stored in a document icon (). The File Selection dialog box displays.

3. Select the PktInstantiateUDFfromDocument.CATPart file and click Open.

4. The Insert Object dialog box displays.

❍ In the Reference scrolling list, select the

user feature that you want to instantiate

(Pad2 in this scenario).

❍ If need be, select Point.2 in the Insert

Object dialog box, then select the Point.2

object in the document geometry area or in

the specification tree.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktForInstantiation.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktInstantiateUDFfromDocument.CATPart

❍ Select Point.3 in the Insert Object dialog

box, then select the Point.3 object in the

document geometry area or in the

specification tree.

❍ Select Extract.1 in the Insert Object dialog

box, then select the face highlighted on the

figure below.

5. Click OK when you are done. The user

feature is instantiated.

Click here to know more about the Insert Object Dialog box.

From a Selection

1. Open the PktInstantiateUDFfromDocument.CATPart and the PktForInstantiation.CATPart files.

2. Tile the window vertically.

3. Expand the KnowledgeTemplates node in the PktInstantiateUDFfromDocument.CATPart file and click the Pad2 user

feature.

4. Go to the PktForInstantiation.CATPart file and click the Instantiate from Selection icon (). The Insert Object

dialog box displays.

5. Click the Use identical name button and click the face highlighted in the picture below.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktInstantiateUDFfromDocument.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktForInstantiation.CATPart

6. Click OK when done. The user feature is instantiated.

Refer to the Quick Reference topic for a comprehensive list of the interactions that can be carried out on user features.

file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/cfyugudf0011.htm

 Assigning a Type to a User Feature

This task explains how to reference user features like any other existing types.

To assign a type to a user feature, proceed as follows:

1. Select a Reference Directory For Types in the Tools->Options->General-

>Parameters and Measure->Language tab. This directory will contain the created

user types (.CATGScript files). This way, user types will be persistent from a CATIA V5

session to another.

2. Declare your type in the Type tab of the User Defined Feature Definition window.

We call:

❍ User Type, the name attributed to the UDF in the Definition tab.

❍ Instance Type, the new type you are declaring.

Note that:

● It is recommended to insert a project prefix in the type name: my_project_hole.

● You can manage your user type by:

❍ Storing it in the following CATIA packages: Mechanical Modeler, GSD
Package or PartDesign.

❍ Assigning it a super type.

● When pushing the button Create Type, the new user type becomes available in the
session.

● User Features can define new types of objects created by the user and can therefore be
searched for like any other type. They are also available in the Knowledge Expert browser.

● If you want other users to use the user feature you created, you will have to provide them
with the user feature, the catalog in which it is stored (if stored in a catalog), and the
CATGScript file.

1. Open the Pktudfcreateatype.CATPart document.

Pay attention to the Assemble.2 object. This object is the one we are going to use to

create a user feature.

2. Select the Insert->Userfeature->Userfeature Creation... command from the

standard menu bar if you are currently working with the Part Design or Generative

Shape Design workbenches or click the Create a User Feature icon () if you are

in the PKT workbench.

3. The Userfeature definition window opens.

a) In the Definition tab,

replace the default user

feature name (enter Pad2 as

a new name for example)

then select the Assemble.2

object in the specification

tree.

(Click the graphic opposite to

enlarge it.)

b) In the Parameters tab,

publish the parameter that

will be published. To do so,

proceed as follows:

(Click the graphic above to enlarge it.)

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/Pktudfcreateatype.CATPart
file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/images/pktUDFDefinition2LargeNLS.gif
file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/images/pktUDFParametersLargeNLS.gif

❍ Select

`Body.2\Geometrical

Set.1\Circle.2\Circle

center

radius.1\Radius`, click

the Published Name

check box and change the

name of the parameter

(Radius for example)

c) In the Type tab, enter the

name of the instance type:

Enter the first part of the type

in the first box, the second

part in the second box and hit

the Enter key.

Click the Manage Type

button.

Indicate the Super Type and

the Package.

Click Create Type, Save,

and Close.

(Click the graphic above to enlarge it.)

Note that if you want

to publish parameters

later, you will have to

re-generate the

CATGScript in the

Manage Type

window.

file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/images/pktUDFTypeLargeNLS.gif

❍ Note that only the MechanicalModeler, the GSD and the Part Design

packages are available here.

❍ Part Design is the default package.

4. Click OK to exit the user feature dialog. The Pad2 user feature is added to the

specification tree right below the KnowledgeTemplates node. Click here to display the

part containing the generated part and here to open the generated .CATGScript file.

Refer to the Quick Reference topic for a comprehensive list of the interactions that can be
carried out on user features.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/Pktcreatedtype.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/Pktpadudf.CATGScript
file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/cfyugudf0011.htm

Referencing User Features in Search Operations

This task explains how to reference user features like any other existing types and how to
perform search operations on these types.

● User Features can define new types of objects created by the user and can therefore be
searched for like any other type.

● If you want other users to use the user feature you created, you will have to provide them
with the user feature, the catalog in which it is stored (if stored in a catalog), and the
CATGScript file.

Prior to carrying out this scenario, indicate the reference directory for types (Tools->Options-
>General->Parameters and Measure->Language tab) and copy the Pktpadudf.CATGScript
file into this directory.

1. Open the Pktudfcreatedtype.CATPart document and access the Product Knowledge

Template workbench (if needed).

2. Select the Insert->UserFeature->Save In Catalog... command from the

standard menu bar or click the Save object in a catalog icon (). The

'Catalog save' dialog box is displayed.

3. Select the Create a new catalog option and click the button on the right-

hand side of the Catalog name field. The dialog box displayed allows you to

specify a .catalog file where to store the created user features. Enter a file

name and click Open. Click OK in the Catalog save dialog box.

4. Open the PktForInstantiation.CATPart document. The following screen is displayed.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/Pktpadudf.CATGScript
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/Pktudfcreatedtype.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktForInstantiation.CATPart

5. In the standard toolbar, click the icon. The catalog browser is displayed.

6. Click the icon. In the dialog box which is displayed, select the catalog which

contains the user features you want to instantiate. Click Open to open the selected

catalog. The dialog box displayed next depends on your last interaction on this catalog.

Double-click the object displayed in the left pane until you get Pad2 on screen:

12. Double-click the 'Pad2' object. The Insert
Object dialog box is displayed.

(Click the graphic opposite to enlarge it.)

To know more about the Insert Object
dialog box, click here.

7. Instantiate Pad2 in the document. To do so, proceed as follows:

a.
Select Point.2 in

the "Insert Object"

dialog box, then

select the Point.2

object in the

document

geometrical area

or in the

specification tree.

b.
Select Point.3 in

the "Insert Object"

dialog box, then

select the Point.3

object in the

document

geometrical area

or in the

specification tree.

file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/images/pktInsertObjectLargeNLS.gif

c.
Select Extract.1 in

the "Insert Object"

dialog box, then

select the face

highlighted on the

figure below.

d.
Click OK and

Close. Pad2 is

instantiated.

8. Select the Edit->Search

(CTRL+F) command. The

Search window opens.

Select the Advanced tab.

(Click the graphic opposite to enlarge
it.)

9. Select Part Design under Workbench.

10. Select Pad2 under Type. Pad2 is the Definition name defined in the Definition tab.

11. Select Radius under Attribute. The Attributes' criterium dialog box opens. Enter

20mm in the = field. Click OK.

file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/images/pktSearchWindowAdvancedLargeNLS.gif

Note that Pad1 and Pad2 are now considered like any other types and

can therefore be searched for.

12. Click Search: the Pad2 instance (Pad2.1) is displayed in the Object found field and is

highlighted both in the specification tree and in the geometrical area (click the graphic

below to enlarge it.)

Refer to the Quick Reference topic for a comprehensive list of the interactions that can be
carried out on user features.

file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/images/pktUDFSearchLargeNLS.gif
file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/cfyugudf0011.htm

 User Features: Useful Tips

Creating a User Feature
Note that the limitations that apply to PowerCopies also apply to user features.

● As far as possible, minimize the number of elements making up the user feature.

● When defining user features including sketches, use profiles constrained with respect to edges or faces
rather than to planes. Additionally, set the option Create geometrical constraints off before sketching.
Generally speaking, it is always preferable to use profiles both rigid and mobile.

● It is preferable to constrain elements with respect to external references such as faces, edges, reference
or explicit planes.

● It is preferable not to use projections nor intersections in your sketch if you want to use your sketch in a
user feature.

● Avoid constraints defined with respect to reference planes.

● Before creating your user features, make sure that your sketch is not over-constrained.

● Make sure that your sketch is iso-constrained (green color). You can use non-iso-constrained sketches, but
it will be more difficult to understand and control the result after instantiation.

● To create a User Feature, create first a PowerCopy, and try it in different contexts. When the instantiation
is OK, create the User Feature by selecting the PowerCopy. It is easier to understand and modify a
PowerCopy.

● Provide basic and full User Feature on the same geometry (with or without final Trim for example). If an
update error occurs, the user can try the basic User Feature and perform manually the last operations.

Managing inputs:

● Always rename your inputs to help the end user understand what he needs to select.

● A formula is automatically included in a user feature definition when all its parameters are included.
Otherwise, i.e. if at least one parameter is not selected as part of the user feature, you have to manually
select the formula to make it part of the definition. If you do so, all the formula's parameters that have not
been explicitly selected, are considered as inputs of the user feature.

● Note that when including parameters sets containing hidden parameters in a user feature, the hidden
parameters are automatically instantiated when instantiating the user feature.

Preview:

● In a Part document, create only one User Feature reference. It is not a technical restriction, but there are
at least two raisons for this: The cost of an instantiation will be smaller if the Part document is smaller.
The end user can more easily understand the feature to be instantiated.

● Put in "show" only the input and the result (to help the end user to understand what he needs to select).

● Use color to differentiate inputs (put transparency on result for example).

● Choose a pertinent viewpoint before saving the Part document reference, default viewpoint in preview
during instantiation will be the same.

Geometry:

● Create sketches on an axis system, in order to better control the Sketch position.

● Avoid constraining your 2D elements with respect to HV absolute axis. The result you obtain after
instantiating the PowerCopy could be unstable. Actually, you cannot control the position of the origin of
the absolute axis nor its orientation.

Catalog:

● Do not forget catalog integration if you want to provide several User Features.

Instantiating a User Feature

● Always check the orientation for curve and surface.

● If you need to instantiate a user feature several times on the same input, rename your inputs and use the
"Use identical name" option.

 User Features: Limitations

● Note that datums (features that cannot be calculated) cannot be inputs of user features.

● Note that sub-elements cannot be inputs of user features. For example, the face of a pad cannot be an
input.

● Note that when creating the user feature, it is not possible to edit (add/remove) inputs after leaving the
Definition tab. Click the Cancel button and create a new user feature.

● UDF graphical properties (such as color, show/hide status, ...) depend on the graphical properties of its
components at creation. As soon as the UDF is created, i.e. as soon as the components are defined and
validated (either by clicking OK in the definition panel or by changing tabs), the graphical properties of the
UDF are "frozen" and thus independent from the graphical properties of its components.
The reason why the UDF graphical properties are independent from its internal graphical properties is that
the UDF is a feature with its own graphical properties. Those properties can be modified using the Properties
contextual command. If the UDF properties were dependant from the UDF internal components, the user
wouldn't be able to modify the UDF graphical properties using the Properties contextual command, or the
graphical properties available from the contextual command and graphical properties defined by parameter
would not match.
So it is highly recommended not to use Knowledge parameters inside the UDF to drive its graphical
properties.

To know more about User Features ...
Refer to the Quick Reference topic for a comprehensive list of the interactions that can be carried out on user
features.

The UserFeature command can be accessed by selecting the Insert->UserFeature command from the

following workbenches:

● Part Design

● Generative Shape Design

and by clicking the Create a User Feature icon () from the Product Knowledge Template workbench.

A User Feature is a template that works at the part level. From a collection of features (geometry, literals,
formulas, constraints, etc.), the user can create his/her own feature. The result is a Part Design feature or a
Shape Design feature that can be reused in the design of another part. The created feature can be saved in a
catalog.

A user feature:

● Allows to create applicative features

● Allows to hide design specifications and preserve confidentiality (for instance to sub-contractors)

User features (like a line for Drafting or a check for Knowledge Advisor) are open and shareable objects. This
capability significantly increases the potential application of user features since it enables to:

● Find user features by attributes.

● Generate user features with the Scripting language to simplify the process of creating scripts .

● Define expert rules working on user features with Knowledge Expert (to know more, see the Knowledge
Expert User's Guide).

● Use user features in Knowledge Advisor reactions.

● Develop CAA functions based on user defined variables.

file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/cfyugudf0011.htm

Managing Part and Assembly Templates

Refer to the Quick Reference topic for a comprehensive list of the interactions that can be carried out
on document templates. Refer to To know more about Part and Assembly Templates to know more
about these features.

Create a Document Template: Select the Insert -> Document Template Creation ... command or

click the Create Document Template icon () (if in the PKT workbench), select the elements
making up the document template from the specification tree, define a name for the document template
and its reference elements then choose an icon for identifying it.

Introducing the Document Template Definition Window
Creating a Part Template

Instantiating a Part Template
Adding an External Document to a Document Template

Document Templates: Methodology
To Know More About Part And Assembly Templates

 Introducing the Document Template Definition
Window

The Document Template Definition window can be accessed by selecting the Insert->Document Template

Creation... command from the following workbenches:

● Product Structure

● Part Design

● Assembly Design

● Generative Shape Design

● Wireframe and Surface Design

The user can access the Product Knowledge Template workbench from the Part Design and the Product
Structure workbenches.

The Documents tab

The Documents tab shows the complete path and Action of the files referenced in the
Template. The Action status can be either:

● Same Document or

● New Document.

If the document is seen as New Document, it is then duplicated and does not have any
link with the original component (equivalent of the New from... command.)

If the document is seen as Same Document, a link is maintained with the original file.

The button enables you to modify
the Action of the components.

The buttons of the External documents sections enable you to select
external documents and insert them into the template.

file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/images/pktPartTemplate1NLS.gif

It is now possible to associate non CATIA (ENOVIA VPM V5, ...) documents to
a template. To do so, make sure you have enabled the desired environment
in the Document Environments field (Tools->Options->General-
>Document.) Your documents will be accessible via the Document Chooser.

The Inputs tab

The Inputs tab enables you to define the reference elements making up the Template
by selecting them in the geometry or in the specification tree.

The Accept instantiation even if not all inputs are filled option enables
users to determine if the template can be instantiated even if not all inputs are
valuated. If all inputs are not valuated, old inputs will be kept and isolated at
instantiation. This option can be useful if there is more than one way to position
the template in context, if you want all these combinations to be available but
you want to use only one of them at the same time. To see an example, see
Creating a Part Template and lnstantiating a Part Template.

For a clearer definition, you can select these items in the viewer and enter a new name
in the Role field.

The Role field enables you to select one of the items displayed in the window and to
rename it. It is used at instantiation through the Use identical name button in the
Insert object panel.

The Type column indicates if the input is manual or automatic. The inputs are
considered as

● Manual if they are added manually

● Automatic if they are external references that point an object defined outside the
template.

The Published Parameters tab

file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/images/pktPartTemplate5NLS.gif

The Published Parameters tab enables you to define which parameter value used in
the Template you will be able to modify when instantiating it.

The Edit List... button enables you to access the list of parameters, and to select those
you want to publish. These parameters are displayed in the Part Numbers viewer.

The Auto modify part numbers with suffix check box, if checked, automatically
modifies the part numbers at instantiation if the part numbers already exist.

● Note that if the user wants to manage the way part numbers are modified
at instantiation, he just needs to uncheck this option and click, at
instantiation, the Parameters button in the Insert Object dialog box. This
way he can access the part numbers that he wants to modify.

● The unicity of part numbers is now ensured when instantiating document
templates into different documents or when the document template is used
by different users. When the part numbers renaming mode is set to
automatic, a suffix parameter is automatically published by the document
template. At instantiation, after valuating the inputs of the document
template, suffixes can be changed by clicking the Parameters button in the
Insert Object window. Note that it is not possible to "unpublish" the suffix
or to change its role.

The Icon tab

The Icon tab enables you to modify the icon identifying the Template in the
specifications tree. A subset of icons is available when clicking the Icon choice button.

Clicking ... displays the Icon Browser, showing all icons loaded in your CATIA session.

The Grab screen button enables you to capture an image of the template to be stored
along with its definition.

The Remove preview button enables you to remove the image if you do not need it.

The assembly structure of the documentation template should not be modified after the document
template definition (you cannot add or remove documents for example.)

file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/images/pktPartTemplate7NLS.gif
file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/images/pktPartTemplate9NLS.gif

 Creating a Part Template

This scenario explains how to create a part template containing a keypad that will be instantiated into a
CATProduct document. In this scenario, the user:

● Creates 2 document templates. When creating the first document template, he does not check the Accept
instantiation even if not all inputs are filled option (Steps 1 to 4). When creating the second document
template, he checks the Accept instantiation even if not all inputs are filled option (Steps 5 to 8). To
know more about this option, see Introducing the Document Template Definition Window.

● Saves both document templates in a catalog.

Creating the first template

1. Open the PktMobilePhoneKeypad.CATPart

file. The following image displays.

2. From the Insert menu, select the Knowledge Templates->Document Template ... command (in the

Part Design workbench) or, if in the Product Knowledge Template workbench, click the Create a

Document Template icon (). The Document Template Definition window displays.

3. In the Document Template Definition window, click the Inputs tab to select the inputs. To do so,

proceed as follows:

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktMobilePhoneKeypad.CATPart

❍ In the geometry, select the following features:

- Curve.8

- Sharp_Sketch.3

- Arrow_down_Sketch.6

- Ok_Sketch.7

- Arrow_up_Sketch.8

- Cancel_Sketch.9

- Surface.3

❍ In the Inputs tab, select the Curve.8 feature and assign it a role in the Role field. Repeat the

same operation for the features you selected. The final Inputs tab should look like the picture

below.

4. Click the Published Parameters tab to publish parameters. To do so, proceed as follows:

❍ Click the

button. The Select

parameters to insert

window displays.

❍ Use the arrow to select

the Button_Offset and

the Button_top_angle

parameters in the

Parameters to publish

column.

❍ Click OK twice. The

Document template is

added to the

KnowledgeTemplates

node.

❍ Right-click DocumentTemplate.1 and select the Properties command to rename the

document template.

❍ In the Feature Name field, enter Keypad1. Click OK to validate.

Creating the second template

1. From the Insert menu, select the Knowledge Templates->Document Template ... command (in the

Part Design workbench) or, if in the Product Knowledge Template workbench, click the Create a

Document Template icon (). The Document Template Definition window displays.

2. In the Document Template Definition window, click the Inputs tab and select the following inputs in

the specification tree:

❍ Curve.8

❍ Sharp_Sketch.3

❍ Arrow_down_Sketch.6

❍ Ok_Sketch.7

❍ Arrow_up_Sketch.8

❍ Cancel_Sketch.9

❍ Surface.3

3. Check the Accept instantiation even if not all inputs are filled check box.

4. Click the Published Parameters tab to publish parameters. To do so, proceed as follows:

❍ Click the

button. The Select

parameters to insert

window displays. In the

Parameters to publish

column, click the

Button_Offset and the

Button_top_angle

parameters and use the

arrow to select them.

❍ Click OK twice. The Document template is added to the KnowledgeTemplates node.

❍ Right-click DocumentTemplate.2 and select the Properties command to rename the document

template.

❍ In the Feature Name field, enter Keypad2. Click OK to validate.

❍ Save your file.

5. Store the document template in a catalog. To do so, proceed as follows:

❍ If not already in the Product Knowledge Template workbench, from the Start-

>Knowledgeware menu, access the Product Knowledge Template workbench.

❍ Click the Save in catalog icon (). The Catalog save dialog box displays.

❍ Click OK to create a new catalog or the ... button to change the name of the catalog. The

catalog is created.

❍ Click here to display the result catalog file. Click here to display the result .CATPart file.

6. Close your file and proceed to the next task: lnstantiating a Part Template.

Refer to the Quick Reference topic for a comprehensive list of the interactions that can be carried on Document
Templates.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktKeypadscatalog.catalog
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktMobilePhoneKeypadResult2.CATPart

 lnstantiating a Part Template

This scenario explains how to instantiate a template into a CATProduct file. It is divided into 2
different parts:

● The user instantiates Keypad1, a document template saved in the PktKeypadscatalog.catalog.

● The user instantiates Keypad2, a document template saved in the PktKeypadscatalog.catalog.

To carry out this scenario, you need the following files:
● PktMobilePhoneSupport.CATProduct that is made up of the following CATPart and CATProduct

files:

PktBottomcase.CATPart PktBattery.CATPart

PktBody.CATPart PktLens.CATPart

PktIndus.CATPart PktLCD30-28.CATPart

PktFrontShell.CATPart PktElectronic.CATProduct

PktPlanarCard.CATProduct PktSpeaker.CATPart

InteractiveBoard.CATPart PktCapacitor_500.CATPart

PktCapacitor_700.CATPart PktChip_AC30.CATPart

PktChip_AC110.CATPart PktChip_AC20.CATPart

● PktKeypadscatalog.catalog: This catalog contains 2 document templates: Keypad1 and Keypad2.
When creating Keypad1, the Accept instantiation even if not all inputs are filled option was
unchecked. When creating Keypad2, the Accept instantiation even if not all inputs are
filled option was checked.

Instantiating Keypad1

1. Open the PktMobilePhoneSupport.CATProduct file.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktMobilePhoneSupport.CATProduct
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktBottomcase.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktBattery.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktBody.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktLens.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktIndus.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktLCD30-28.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktFrontShell.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktElectronic.CATProduct
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktPlanarCard.CATProduct
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktSpeaker.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/InteractiveBoard.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktCapacitor_500.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktCapacitor_700.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktChip_AC30.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktChip_AC110.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktChip_AC20.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktKeypadscatalog.catalog

2. Click the Open Catalog icon ()and select

the PktKeypadscatalog.catalog that you created

in the Creating a Part Template topic. The

Catalog Browser opens.

3. Double-click DocumentTemplate, 7 inputs and

Keypad1. The Insert Object window opens.

(Click the graphic opposite to enlarge it).

To know more about the Insert Object dialog box,
click here.

4. Value the Inputs by selecting the publications located below the Industrial Design node in

the specification tree or click the Use Identical Name button in the Insert Object

window.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktKeypadscatalog.catalog
file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/images/pktTemplate6NLS.gif

5. Make the appropriate selections in the Replace Viewer window (see picture below) and

click OK when done.

Note that in some cases, when instantiating a part or assembly template, the replacing
element does not present the same sub-elements as the replaced element. Therefore you
need to clearly indicate in a specific dialog box, the Replace Viewer, how to rebuild the
geometry from the replacing element.

6. Click OK in the Check warning box, then Close. The keypad is instantiated (see picture

below.)

7. Close your file.

Instantiating Keypad2

1. Open the PktMobilePhoneSupport.CATProduct file.

2. Click the Open Catalog icon and select the PktKeypadscatalog.catalog that you created in

the Creating a Part Template topic. The Catalog Browser opens.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktMobilePhoneSupport.CATProduct
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktKeypadscatalog.catalog

3. Double-click Document Template, 7 inputs and Keypad2. The Insert Object window opens.

4. Click OK in the Insert Object window. The keypad is instantiated. Note that you do not have

to value the inputs since the Accept instantiation even if not all inputs are filled option

was checked when creating the Keypad2 part template.

Refer to the Quick Reference topic for a comprehensive list of the interactions that can be carried on
Part Templates.

file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/cfyugudf0011.htm

Adding an External Document to a Document
Template

This task shows how to insert a drawing into a part template and how it is updated at instantiation.
The scenario is divided into the following steps:

● Creating a drawing from an existing part

● Creating the part template

● Instantiating the part template and updates the generated drawing.

Note that the document(s) that can be added to part and assembly templates must belong to one of
the following types:

● .CATDrawing

● .CATProcess

● .CATAnalysis

Prior to carrying out this scenario, make sure that the Keep link with selected object is checked
(Tools->Options...->Infrastructure->Part Infrastructure->General).

1. Open the PktPadtoInstantiate.CATPart file. The following image displays.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktPadtoInstantiate.CATPart

2. From the Start->Mechanical Design menu, access the Drafting workbench. The New

Drawing Creation Window displays.

3. Select the All views configuration and click OK.

4. The drawing corresponding to the pad is generated.

4. Save your drawing and close the file. Click here to see the generated drawing.

5. Go back to the PktPadtoInstantiate.CATPart file to create a part template. To do so, proceed as

follows:

❍ Select the Knowledge Templates->Document Template ... command. The

Document Template Definition window displays.

❍ Click the Add... button in the External documents field and select the .CATDrawing

file you have just created in the File Selection window (or use the

PktPadDrawing.CATDrawing). Click Open.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktPadDrawing.CATDrawing
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktPadDrawing.CATDrawing

❍ Click the Inputs tab and select Sketch.1 and Sketch.2 in the geometry or in the

specification tree.

❍ Click the Published Parameters tab and click the Edit List... button. The Select

parameters to insert window displays. Select the following parameters using the

arrow button:

❍ PartBody\Pad.1\FirstLimit\Length

❍ PartBody\Pad.2\FirstLimit\Length

❍ In the Published Parameters tab, select PartBody\Pad.1\FirstLimit\Length and

rename it to Pad_Width in the Name: field, then select

PartBody\Pad.2\FirstLimit\Length and rename it to Pad_Length.

❍ Click OK to validate. Save your file and close it.

6. Open the PktProduct.CATProduct file.

7. From the Start->Knowledgeware menu, access the Product Knowledge Template

workbench (if need be).

8. Click the Instantiate From Document icon () and select the

PktPadtoInstantiate_result.CATPart containing the document template. Click Open. The Insert

Object dialog box displays.

9. Expand the PartBody\Pad.1 node in the specification tree, select Sketch.1, and make the

appropriate selections in the opening Replace Viewer window (see graphic below). Click

Close when done.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktProduct.CATProduct
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktPadtoInstantiate_result.CATPart

10. Select Sketch.2 in the geometry or in the specification tree.

11. Click the Parameters button and enter 10mm in the Pad_Width field and 90 in the

Pad_Length field.

12. Click Close and OK to validate. A message is fired indicating that the external document was

regenerated. Click OK. The document template was instantiated. (see picture below).

13. From the Window menu, access the generated .CATDrawing file. Right-click CATDrawing2 in

the left part of the window and select the Update Selection command. The drawing is

updated and matches the new product.

Refer to the Quick Reference topic for a comprehensive list of the interactions that can be carried out
on document templates.

file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/cfyugudf0011.htm

 Document Templates: Methodology

● It is possible for the user to define document templates based on contextual products and parts or on
isolated parts and products. It is highly recommended to work with isolated documents: not so many
documents will be instantiated (when working with contextual products, the context products are needed for
instantiation).

● The assembly structure of the documentation template should not be modified after the document template
definition (you cannot add or remove documents for example.)

To know more about Part and Assembly
Templates...

Part and Assembly Templates are templates that work at the part or at the assembly level.

The Document Template Definition window can be accessed by selecting the Insert->Document Template

Creation... command from the following workbenches:

● Part Design

● Generative Shape Design

● Wireframe and Surface Design

● Assembly Design

● Product Structure

Working with Part Templates

A part created in Catia may contain user parameters and geometry data. It is not a contextual part. The user
can create a part template that references that part. This template is a feature that is created in the CATPart
document itself (very similar to the PowerCopy definition) and stored in a catalog. Several part templates may
be defined in the same CATPart document.

To create a part template, the user:

● selects parameters and geometry data that will be considered as the template inputs (he can assign a role
and a comment to each input).

● publishes some internal parameters (name and comment). The part number is automatically published.

● gives a name, comment, URL, icon to this template.

In product structure context, the part is inserted as a component of the current product.

Working with Assembly Templates

A user creates an assembly interactively. Then, he wants to create an assembly template that references the
root product of this assembly.

To create an assembly template, the user:

● selects parameters and geometry data that will be considered as the template inputs (he can assign a name
to each input).

● publishes some internal parameters (name and comment).

● chooses if:

- the part numbers of replicated components are automatically published.

- for each part or each sub-assembly, this sub-component will be replicated at instantiation or if
only a reference to this sub-component will be created (a standard component).

- he wants to select external documents (Drawings / Analysis) that references elements of the
product structure. Those elements will be replicated at instantiation.

● assigns a name, comment, URL, icon to this template.

The template definition is a feature located in the CATProduct document itself. Several assembly
templates may be defined in the same CATProduct document.

To know more about the Insert Object dialog box ...

The Insert Object dialog box is displayed when instantiating a PowerCopy, a User Feature or a Document
Template.

The Reference scrolling list enables the user to
select the feature that he wants to instantiate
if many advanced features (PowerCopies, user
features and document templates) were
defined.

The Comments & URLs icon () is available
with user features and Document templates
only. It is always grayed out when
instantiating Power Copies. If a URL was
added to a user feature or a Document
template, clicking this icon enables the user to
access the URL. To know more about this
function, see the Knowledge Advisor User's
Guide.

The Name field enables the user to change
the name of the user feature instance.

Use identical
name

Features This function searches in the whole CATPart for features
having the name of the input. If a feature with the input
name is found, this feature is automatically used as input

Publications If a publication with the input name is present in the CATPart,
the input will be valuated with the published element. The
search will be performed only in CATPart files (not in
CATProduct).

Sub-Elements
● If the input is a sub-element of an Axis System (for

instance the input name is "Axis System.1\XY Plane") and
an axis system named "Axis System.1" is to be found in
the CATPart, the "Use Identical Name" function will
automatically create a sub-element on Axis System.1.

● If the input has for name "Point.1/Vertex" (resp
"Line.1/Edge", "Surface.1/Face") and Point.1 (resp Line.1,
Surface.1) is made of only one sub-element, then the
input will be valuated automatically.

Parameters
● When an input parameter of a Power Copy or a User

Feature belongs to a Geometrical Element or a Parameter
Set, in the definition process of the PC or UDF, the default
input name of the parameter is computed relatively to its
father name. For instance for the parameter X of Point.1,
the default input name will be "Point.1/Point
Coordinates.1/X". For a parameter in a parameters set,
the full name of the parameter will be used because
different parameters set can have the same name so we
need the full name to identify the right parameter. For
instance, for the second parameter Length.1, the default
input name will be
"Parameters/Parameter.1/Parameters.1/Length.1"

● Use Identical Name will look for the parameters
published by the geometrical elements. For instance, if the
name of the input is "Point.1/Point Coordinates.1/X"
(default name) and if a Point.1 is found in the CATPart,
the input will be automatically valuated with the
parameter X of Point.1.

It will work the same way with parameters of a parameter
set. For instance, if the name of the input is
"Parameters.1/Parameters.1/Length.1 (default name) and
if a parameter whose absolute path name is
"Parameters.1/Parameters.1/Length.1" is found in the
CATPart, the input will be automatically valuated with the
parameter Length.1 of the Parameters set.

● Multiple solutions Management (V5R11): In case of
multiple solutions found for one input name, there will be
no automatic valuation and the user will have to choose
the desired one by itself.

Parameters This option enables to display the Parameters dialog box and modify values if need be. It
also enables the user to create formulas by clicking the Create formulas button on every
parameter with the same name provided there are any.

Documents This option enables the user to access the list of documents (such as design tables) pointed
by one of the elements making up the template.
If there are documents, the Documents dialog box opens and you can click the Replace
button to display the File Selection dialog box and navigate to a new design table to replace
the initial one.
When no document is referenced, the Documents button is grayed out.

Repeat Check the Repeat button to repeat the instantiation.
In this case, once you have clicked OK in the Insert Object dialog box, the latter remains
open, the template's Inputs are listed and ready to be replaced by new inputs, as
described above.
Modified parameters using Parameters button are retained as well for the next
instantiation.
To exit the command, uncheck the Repeat button before the last instantiation or click
Cancel.

 Interactive Templates Quick Reference

User Features
PowerCopies
Part and Assembly Templates

This topic is intended for those of you who need a
quick answer to their questions about the interactive
templates. However, using this part requires a
prerequisite knowledge of templates as no detail is
given.

User Features

Creating a User Feature
Saving a User Feature in a Catalog
Instantiating a User Feature from a Catalog
Instantiating a User Feature from a Document
Instantiating a User Feature from a Selection
Editing a User Feature
Managing the orientation of the items making up the user feature (planes, curves, ...)
after instantiating the user feature in Edit mode
Working with the User Feature Definition Window

● Renaming an Input

● Publishing Parameters

● Renaming a Parameter

● Modifying the Main Result

● Managing Design Tables

● Modifying a Parameter Value

● Associating a Type to a user feature

Creating a User Feature Scenario

1. Open a .CATPart file.

2. Select the Insert->UserFeature->UserFeature Creation... command from the standard menu bar

or click the Create a UserFeature icon (). The Userfeature Definition dialog box is displayed.

3. Replace the default user feature name, then select the object in the specification tree.

4. Select the Outputs tab. Specify the main result.

5. Click OK in the dialog box. The user feature is added to the specification tree.

Saving a User Feature in a Catalog Scenario

1. Open a .CATPart file.

2. Click the Save in Catalog icon () from the standard menu bar. The 'Catalog save' dialog box is

displayed.

3. Select the Create a new catalog option and click the button on the right-hand side of the Catalog name

field. The dialog box displayed allows you to create a .catalog file where to store the created user

features. Enter a file name and click Open. Then click OK in the Catalog save dialog box. The catalog

containing the user feature is created.

Instantiating a User Feature from a Catalog Scenario

1. Open a .CATPart file.

2. In the standard toolbar, click the Open Catalog icon. The catalog browser is displayed.

3. Click the icon. In the dialog box which is displayed, select the catalog which contains the user

feature(s) that you want to instantiate. Click Open to open the selected catalog. The dialog box which

is displayed next depends on your last interaction on this catalog. Double-click the object displayed in

the left pane until the user feature is available.

4. To instantiate the object into the document, proceed as follows:

a. If need be, select the feature in the Insert Object dialog box, then select the feature in the

document geometry area or in the specification tree.

b. Click the Parameters button. The dialog box which is displayed provides you with the way to

modify the parameter you have declared as published at the user feature creation. Modify the

value (if necessary).

c. Click OK to instantiate the user feature and exit the Insert Object dialog box. The user feature

is instantiated into the document.

Instantiating a User Feature from a Document Scenario

1. Open a .CATPart file.

2. Click the Instantiate an element stored in a document icon. The File Selection dialog box displays.

3. Select the .CATPart file containing the user feature to instantiate, and click Open. The Insert Object

dialog box displays.

4. To instantiate the object into the document, proceed as follows:

a. If need be, select the feature in the Insert Object dialog box, then select the feature in the

document geometry area or in the specification tree.

b. Click the Parameters button. The dialog box which is displayed provides you with the way to

modify the parameter you have declared as published (if any) at the user feature

creation. Modify the value (if necessary).

c. Click OK to instantiate the user feature and exit the Insert Object dialog box. The user feature

is instantiated into the document.

Instantiating a User Feature from a Selection Scenario

1. Open the CATPart file that will contain the user feature instance as well as the file containing the user

feature that you want to instantiate.

2. Tile the window vertically.

3. Expand the KnowledgeTemplates node in the file containing the user feature and click the user feature

once.

4. Go to the file that will contain the user feature and click the Instantiate from Selection icon ().

The Insert Object dialog box displays.

5. Make the appropriate selections and click OK to instantiate the user feature and exit the Insert

Object dialog box. The user feature is instantiated into the document.

Editing a User Feature

To edit a user feature, double-click it in the specification tree to display the UserFeature Definition dialog
box and edit its content. Note that as far as user features are concerned, only the following actions can be
performed in Edit mode:

● Renaming inputs

● Publishing parameters

● Modifying parameters values

● Associating an icon with the user feature

● Modifying the main result

● Creating a type associated with the user feature

Note that the user feature definition cannot be modified after leaving the Definition tab during the
creation process.

Managing the orientation of the items making up the user feature (planes, curves, ...) after
instantiating the user feature in Edit mode

1. Open the PktManagingPlanes.CATPart file.

2. From the Standard menu, select the Insert->Instantiate from Document... command.

3. In the File Selection panel, select the PktPlaneUDF.CATPart file and click Open.

4. The Insert Object dialog box displays. Select:

❍ Plane.1=zx plane

❍ Point.1=Point.1

❍ Plane.2=xy plane

5. Reverse the direction of Plane.1 and Plane.2 and click OK when done. The user feature is instantiated.

6. Double-click UDF.1 in the specification tree. The Definition box of the user feature displays.

Note that even if the selected inputs are both planes, in the first case (Plane.1), the display shows the

zx plane as selected, and in the second case (Plane.2), the display shows a new element (Inverse.1)

which was created and inserted at instantiation. Click OK to exit the dialog box.

7. Open the PktPlaneUDF.CATPart file and double-click the user feature:

❍ The input corresponding to Plane.1 is pointed by a Sketch: The orientation of Plane.1 is
performed inside the Sketch feature. That is why the input is still the zx plane.

❍ The input corresponding to Plane.2 is pointed by a surfacic feature (Extremum.1): To
manage the orientation of surfacic features, an Inverse feature is created. That is why
the input references Inverse.1.

8. Go back to the PktManagingPlanes.CATPart file and double-click the UDF1.1.

9. Select Plane.1 in the Definition box.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktManagingPlanes.CATPart
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktPlaneUDF.CATPart

❍ Note that the

orientation of the
zx plane is not
identical to the
one selected by
the user at
instantiation. It is
a default
orientation for
the input. If you
click the
corresponding
arrow, you can
modify this
orientation to get
the desired one.

10. Select Plane.2 in the Definition box.

❍ Note that the

orientation is the
default one for
the Inverse.1
feature. If you
click the
corresponding
arrow in the
geometry, you
can modify the
orientation of the
user feature
input. You will
see then that the
Inverse feature
disappears or
reappears
depending on the
direction of the
arrow.

Working with the UserFeature Definition Window

Renaming an Input

To rename an input:

● Click the Inputs tab in the Userfeature Definition window.

● Select the input whose name is going to be modified in the graph.

● Change its name in the Name field and click OK when done.

Publishing Parameters

It is possible to publish parameters. This way, when instantiating the user feature, the user can edit
these parameters on the user feature instance. Published parameters appear under the user feature
reference in the specification tree.
To publish a parameter:

● Click the Parameters tab in the Userfeature Definition window

● Select the parameter intended to be modified in a forthcoming instantiation and check the

Published option.

It is recommended to change the name of the published parameters for them to be meaningful to the
end user.

Renaming a Parameter

To rename a parameter:

● Click the Parameters tab in the Userfeature Definition window.

● Select the parameter whose name is going to be modified .

● Check the Published check box and enter the name of the parameter.

Modifying a Parameter Value

To modify the value of a parameter:

● Click the Parameters tab in the Userfeature Definition window.

● Select the parameter whose name is going to be modified.

● Check the Published check box, and enter the new parameter value.

Managing Design Tables

Suppose you include a design table in the UserFeature, you will see the document pointed by the
Design Table (as in Edit->Links). When instantiating or editing the user feature, you will be able to
change the document pointed by the internal design table.

 Modifying the Main Result

1. Open the PktModifyingMainResult.CATPart file.

2. Double-click UserFeature1 located below the KnowledgeTemplates node. The Userfeature

Definition window displays.

3. Click the Outputs tab.

Suppose you are only interested in instantiating the CloseSurface object of Assemble.2.

❍ Select the Main result output.

❍ Click the Replace button, then select the CloseSurface.2 feature in the
specification tree. The CloseSurface.2 feature will be the only object carried
forward to the receiving document during the instantiation process (no
supporting pad).

Suppose you want to instantiate the Assemble.2 feature as a whole plus one of the
circles required to build the Body.2 object (Circle.2 for example).

❍ Specify Assemble.2 as a main result

❍ click the Add button, then select the Circle.2 object in the specification tree.
The instantiation process will carry forward the Assemble.2 object and the
Circle.2 object to the receiving document.

Note that the dimension of the secondary outputs should always be inferior to
the Main result.

Assigning a Type to a User Feature Scenario

1. Open a .CATPart file.

2. Select the Insert->Userfeature->Userfeature Creation... command from the standard

menu bar.

3. In the Definition tab, replace the default user feature name (enter Pad1 as a new name for

example) then select a feature in the specification tree.

4. In the Type tab, enter the name of the instance type: Enter the first part of the type in the

first box, the second part in the second box and hit the Enter key.

5. Click the Manage Type button. Indicate the Super Type and the Package.

6. Click Create Type, Save, Close.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktModifyingMainResult.CATPart

PowerCopies
Creating a PowerCopy
Saving a PowerCopy in a Catalog
Instantiating a PowerCopy from a Catalog
Instantiating a PowerCopy from a Document
Instantiating a PowerCopy from a Selection
Editing a PowerCopy
Introducing the PowerCopy Definition Window

● Renaming Inputs

● Publishing Parameters

● Modifying a Parameter Value

Creating a PowerCopy Scenario

1. Open a .CATPart file

2. Select the Insert ->Advanced Replication Tools -> PowerCopy Creation...menu item or click the

Create a PowerCopy icon.

3. Select the elements making up the PowerCopy from the specification tree.

4. Define the PowerCopy as you wish to create it.

5. Click OK to create the PowerCopy.

Saving a Power Copy in a Catalog Scenario

1. Open a .CATPart file containing a PowerCopy. The PowerCopy displays below the PowerCopy node.

2. Click the Save in Catalog icon () from the standard menu bar in the PKT workbench. The 'Catalog

save' dialog box displays.

3. Select the Create a new catalog option and click the button on the right-hand side of the Catalog name

field. The dialog box which is displayed allows you to specify a .catalog file where to store the created

PowerCopies. Enter a file name and click Open. Then click OK in the Catalog save dialog box.

Instantiating a PowerCopy from a Catalog Scenario

1. Open the .CATPart file that will contain the instantiated PowerCopy.

2. In the standard toolbar, click the Open Catalog icon. The catalog browser is displayed.

3. Click the icon. In the dialog box which is displayed, select the catalog which contains the

PowerCopy that you want to instantiate. Click Open to open the selected catalog.

4. Double-click the object displayed in the left pane until you get the object to be instantiated.

5. Double-click the object. The Insert Object dialog box is displayed.

6. If need be, select the feature in the Insert Object dialog box, then select the feature in the document

geometry area or in the specification tree.

7. Click OK to instantiate the PowerCopy and exit the Insert Object dialog box. The PowerCopy is

instantiated into the document.

Instantiating a PowerCopy from a Document Scenario

1. Open a .CATPart file.

2. Click the Instantiate an element stored in a document icon () . The File Selection dialog box

displays.

3. Select the .CATPart file containing the PowerCopy to instantiate, and click Open. The Insert Object

dialog box displays.

4. To instantiate the object into the document, proceed as follows:

a. If need be, select the feature in the Insert Object dialog box, then select the feature in the

document geometry area or in the specification tree.

b. Click the Parameters button. The dialog box which is displayed provides you with the way to

modify the parameter you have declared as published (if any) at the PowerCopy

creation. Modify the value (if necessary).

c. Click OK to instantiate the PowerCopy and exit the Insert Object dialog box. The PowerCopy

is instantiated into the document.

Instantiating a PowerCopy from a Selection Scenario

1. Open the .CATPart file that will contain the PowerCopy as well as the file containing the PowerCopy

that you want to instantiate.

2. Tile the window vertically.

3. Expand the PowerCopy node in the file containing the PowerCopy and click the PowerCopy once.

4. Go to the file that will contain the PowerCopy and click the Instantiate from Selection icon ().

The Insert Object dialog box displays.

5. Make the appropriate selections and click OK to instantiate the PowerCopy and exit the Insert Object

dialog box. The PowerCopy is instantiated into the document.

Editing a PowerCopy

To edit a PowerCopy, double-click it in the specification tree to display the PowerCopy Definition dialog box
and edit its content.

Introducing the PowerCopy Definition Window

Renaming Inputs

To rename an input:

● Click the Inputs tab in the PowerCopy Definition window.

● Select the input whose name is going to be modified in the graph.

● Change its name in the Name field and click OK when done.

Publishing Parameters

To publish a parameter:

● Click the Parameters tab in the PowerCopy Definition window.

● Select the parameter intended to be modified in a forthcoming instantiation.

● Check the Published option.

Modifying a Parameter Value

To modify the value of a parameter:

● Click the Parameters tab in the PowerCopy Definition window.

● Select the parameter whose name is going to be modified.

● Check the Published check box, and enter the new parameter value.

Part and Assembly Templates
Creating a Part Template
Instantiating a Part Template
Introducing the Document Template Definition Window

● Adding External documents

● Assigning a Role to an Input

Creating a Part TemplateScenario

1. Open a .CATPart file.

2. From the Insert menu, select the Document Template Creation ... command or click the Create a

Document Template icon ().

3. In the Document Template Definition window, click the Inputs tab and select the inputs you want

to select.

4. In the Document Template Definition window, click the Published Parameters tab to publish

parameters (if need be.)

5. Save the file (note that you can save the document template in a catalog.)

lnstantiating a Part Template from a catalogScenario

1. Open a .CATProduct file.

2. Click the Catalog icon and select the catalog you created when creating the template.

3. Double-click the family and the Document Template.1 template.

4. In the Insert Object window, click the Use Identical Name button in the Insert Object window.

Make the appropriate selections in the viewer when necessary and click OK when done.

Using the Document Template Definition Window

Adding External documents

To add external documents:

● In the Documents tab, click the Add... button. The File Selection window displays.

● Select the file that will be associated to the template.

● Click Open.

Note that external documents can only be files of the following types:

● .CATDrawing

● .CATAnalysis

● .CATProcess

Assigning a Role to an Input

To assign a role to an input:

● Click the Inputs tab in the Document Template Definition window.

● Select the input whose name is going to be modified in the graph.

● Change its name in the Name field and click OK when done.

Advanced Tasks
 Working with Scripting Templates

Use Cases
Integration with Enovia V5

file:///E|/www/meidocr14/Doc/online/pktug_C2/pktugat0072.htm

 Working with Scripting Templates

● The upward compatibility of the Scripting Language is guaranteed.

● For comprehension purposes, some modifications (listed in the following pages) have been made to
the Generative Script language. New objects have been added, as well as new attributes. Some types
have been removed.
To know more about the objects and their new equivalents, see Generative Script Objects.

● The objects available in the browser can now be instantiated.

This new section explains how to use the scripting language to create templates. It is divided into 2 different
parts: The first part explains the basics of the scripting tool that you can access by clicking the Create a

Generative Script icon in the toolbar. This first section is made up of the following topics:

● Creating a Script

● Starting from a Script Skeleton

● Generating the Result of a Script

The second part presents the script: its structure, its syntax, its objects, the commands that can be of use when
writing a script as well as more advanced functions. This second section is made up of the following topics:

● Using the Scripting Language

❍ Script Structure

❍ Generative Script Objects

❍ Object Properties

❍ Comments

❍ Operators

❍ Keywords

❍ Variables

❍ Limitations

❍ Using The Generative Knowledge Commands

● Specifying a Context

● Declaring Input Data

● Reusing Input Data

file:///E|/www/meidocr14/Doc/online/pktug_C2/pktugat0015.htm
file:///E|/www/meidocr14/Doc/online/pktug_C2/pktugat0024.htm

 ● Tips and Tricks

Before creating a loop in a CATPart document, make sure that the Manual input option is
unchecked in the Part Number field of the Tools->Options->Infrastructure->Product
Structure->Product Structure tab.

 Creating a Script

This task explains how to use the script editor as a dialog box to create a script. For information
on how to write a script, see Using the Scripting Language

Before creating a loop in a CATPart document, make sure that the Manual input option is
unchecked in the Part Number field of the Tools->Options->Infrastructure->Product
Structure->Product Structure tab.

1. Access the Product Knowledge Template workbench by selecting the Product Knowledge

Template workbench from the Start->Knowledgeware menu.

2. Click the icon. The Knowledgeware Script Editor is displayed.

3. At this stage, you can create a document skeleton by using the File->New->CATPart or

CATProduct document command or by typing the proper instructions into the editor.

See Using a Script Skeleton for information on how to start from a
skeleton.
See Using the Scripting Language for information on the language.

4. Save your script by using the File->Save or File->Save As command. Your script is

saved in a .CATGScript file.

5. Click Generate to create the document.

 Starting from a Script Skeleton

This task explains how to write a script by using the Script Editor. This editor provides the user
with a way to create a skeleton which reflects the structure of a .CATPart or of a .CATProduct
document.

1. In the Product Knowledge Template workbench, click the icon. The Script

Editor is displayed.

2. In the Script Editor, select the

File->New->CATPart document

 command. The dialog box is

displayed:

3. Fill in the fields and click OK. A basic

script is created.

4. Save your script and/or generate the

related document.

To enrich this script, see Using the Scripting Language.

 Generating the Result of a Script

This task shows how to generate a document from a script.

1. Access the Product Knowledge Template workbench by selecting the

Knowledgeware-> Product Knowledge Template command from the Start menu.

2. Click the icon. The Knowledgeware Script Editor is displayed.

3. Enter your script in the editor or open an already existing .CATGScript file.

4. Click Generate. The related document is created in the geometry area.

5. If need be, save your script before exiting the editor.

You can add a new feature to an already existing part provided the name of the part in the
script describing this new feature is the same as the name of the part to which you want to add
the new feature to. This capability applies to parts generated either from a script or from the
Part Design workbench.

 Using the Scripting Language

Introducing the Scripting Language

The Scripting Language is a declarative way of generating V5 Features.

What does it allow users to do?

 They can describe objects using a very simple script language.
● 3D geometric features (sketches, parts, ...).

● Parameters on features including formulas.

● Related positioning & orientation constraints.

 They can interactively generate the corresponding V5 models.

How can users use it?

● They can launch the Script editor (graphic mode) in the Product Knowledge Template workbench,

open a script file or type it in, then generate the result.

● They can launch a script file in a Rule action using the GenerateScript function.

● They can launch a script stored in a catalog.

Introducing the Scripting Language main Features

The Scripting language enables users to:

● Import definitions from other models/scripts and then instantiate the imported components.

See Import keyword.

● Incrementally define objects, their properties and the other features they own.

● Define input parameters that will be valued by the user at the beginning of the generation.

See Declaring Input Data.

● Easily capture generic naming to instantiate contextual features, constraints, ...

See Using the Generative Knowledge Commands.

 Script Structure
Generative Script Objects

Object Properties
Comments
Operators
Keywords
Variables

Limitations
Using The Generative Knowledge Commands

file:///E|/www/meidocr14/Doc/online/pktug_C2/pktugat0024.htm

 Script Structure

A generative script is written in text format and is organized in blocks consisting of related sets of statements.
A block consists of an instruction designed to create an object followed by a set of statements surrounded by
braces ({ }). Statement blocks can be nested and the most enclosing one within a script corresponds to the
document creation.

A document is made up of a hierarchy containing objects, their properties and the features they own. A
generative script reflects this object hierarchy. In the outermost statement block, you must create the
document intended to contain all the features to be created later on.

Example 1

Please find below the basic structure of a script. You can create this skeleton by using the
File->New->CATPart document command of the Script Editor:

part isa CATPart
{
 Mypart isa Part
 {
 PartBody isa BodyFeature
 {
 }
 }
}

 Example 2
MyDocument isa CATPart // Creates a CATPart
document
{
 MyPart isa Part
 {
 L = 30.0;
 PartBody isa BodyFeature // Creates the main body
 {
 Length = 100.0; // Length is a parameter of the
part
 Cyl isa Cylinder
 {
 cylinderLength = 20.0;
 }
 Base isa Cylinder // Base is an instance of
Cylinder owned by MyPart
 {
 Height = ?Length * 2; // a formula property
using MyPart/Length;
 }
 }

 }
}

To know more about the isa keyword and the ? operator, see isa keyword and ? operator.

 Object Properties

● An object is created by default with some property values. These properties are defined or re-

defined within the braces just following the object declaration (isa keyword).

● Unless otherwise specified, the units are SI units.

● When defining properties, the semicolon (;) is a terminator (see example below).

Example
myLineDocument isa CATPart
{
 myPart isa Part
 {
 OBody isa OpenBodyFeature
 {
 Po1 isa GSMPoint
 {
 PointType = 0;
 TypeObject isa GSMPointCoord
 {
 X = 50mm;
 Y = 100mm;
 Z = 150mm;
 }
 }
 Po2 isa GSMPoint
 {
 PointType = 0;
 TypeObject isa GSMPointCoord
 {
 X = 50mm;
 Y = 0mm;
 Z = 150mm;
 }
 }
 L isa GSMLine
 {
 LineType = 0;
 TypeObject isa GSMLinePtPt
 {
 FirstPoint = object: ../../Po1;
 SecondPoint = object : ../../Po2;
 }
 }
 L2 isa GSMLine
 {
 RefPoint = object: ../../Po1;
 Values["Start"] = 2 mm;
 Values["End"] = 20 mm;

 RefSkin = object : ../../../`xy-plane`;
 }
 }
 }
 }
}

To know more about the objects, see Generative Script Objects.

 Comments

Multi-line comments (/* ... */) are supported. A single-line comment begins with a pair of forward slashes(//).

Note that DBCS characters are not supported as comment.

Example
Sphere1 isa Sphere // Creates a sphere
 {
 // Valuates the Radius property
 Radius = 15.0 ;
 }

 Operators

Arithmetic operators

+ Addition operator (also concatenates strings)

- Subtraction operator

* Multiplication operator

/ Division operator

 () Parentheses (used to group operands in expressions)

= Assignment operator

? (Question Mark in Formulas)

Definition

In a formula, specifies that the parameter value to be applied is the first parameter value found when scanning
the specification tree from the formula to the top of the specification tree.

(Relative Path in Formulas)

Definition

Defines where the value of a parameter used as an argument in a formula is to be read. A single.. exits the
statement block where the formula is defined. The parameter value applied in the formula is then the one
defined in the parent feature scope.

 Keywords

isa import

from context

publish input

in let

import Keyword

Definition

Specifies a document file (.CATPart or .CATProduct) containing definitions to be reused or redefined in the
document to be generated. All the features and feature values in the imported file become available to the
document to be generated.

Importing a document is:

● Of interest whenever you want to retrieve a consistent set of definitions from an already existing

document.

● Required whenever you need to create a feature from a sketch (the script language does not allow

you to specify a sketch).

Syntax

import FileName ;

where FileName is the name of the file which contains the document to be imported.
You should enclose the document name within quotation marks and end the import statement with a semicolon
(;).

To specify a file to be imported, you can:

● Use the 'Insert File Path' command from the contextual menu. Selecting this command
displays a file selection panel. Quotation marks are automatically included but not the
semicolon or

● Use the Input keyword. A dialog box is displayed when the document is generated. You have

to enter the input data required one-by-one to execute the script. For more information, see
Input and In Keywords.

Example

The following statement
import Input : FilePath "Name of the document to be imported";
displays the dialog box below when the script is executed:

Clicking Select displays a file selection panel. You have to click Apply to make the OK button active.

let Keyword

Definition

Assigns the value of an Input expression to a variable. Using this keyword prevents you from re-entering the
value of an input data.

Syntax

let name = Input : type_of_input ;

Example
context Input : Feature "Context ?"

let X = Input : Feature "First Point to reuse";
let Y = Input : Feature "Second Point to reuse";

body isa OpenBodyFeature
{
L isa GSMLine
{
LineType = 0;
TypeObject isa GSMLinePtPt
{
FirstPoint = object: Input X;
SecondPoint = object: Input Y;
}
}
}

In Keyword

Definition

Enables the user to create a multiple value parameter. It can be used together with the Input keyword to
specify that a piece of data is a multiple value one.

Syntax

DataName = DefaultValue, Input: DataType In: 'value1,value2,...';

where:

● DataName is the name of the piece of data whose value is to be entered by the end-user.

● DefaultValue is the default value to be displayed in the "Enter Inputs" dialog box.

● DataType is the type of the piece of data whose value is to be specified (see above).

Example
myDocument isa CATPart
{
 myPart isa Part
 {
 PartBody isa BodyFeature
 {
 WWW = 3.6 mm , Input: Length;
 X = 6.6 mm , Input: Length In : `6.6mm,12 mm,100mm,3.3m` ;
 Y = 5 , In : `5,10,15,25,50,3304324324`;
 XX = "relation" , In : `relation1, relation2, relation3`;
 ZZ = 3, Hide: true;
 }
 }
}

publish Keyword

Definition

 Enables the user to assign an object a name that will be used in the script.

Syntax

publish "!xxx" as yyy ;

Where:

● xxx is the name of the object to be published. To select this object, it is highly recommended to use

the contextual menu.

● yyy is the name you want to assign to this object

Example 1
Product_Root isa CATProduct
{
Product_Assemblage isa Product
{
Part_For_Publish isa Product
{
Boite isa Part
{
PartBody isa BodyFeature
{
My_Boite isa Pad {}
}
}
publish "!Selection_RSur:(Face:(Brp:(My_Boite;0:(Brp:(Sketch.1;2)));None:());My_Boite)" as
Surf_Normal_To_X_axes;
}
}
}

Input Keyword

Definition

Enables the user to declare a value to be entered by the end-user. Before the document is generated, a dialog box is
displayed and the user is required to enter a value for each piece of data declared as an input.

The Input keyword may be used in two different contexts:

● If you want a user input to be required, use the following syntax:
Input:type_of_the_needed_input
Example: Input:Feature or Input:Length or Input:FilePath

A user input may be required in the following cases:

● To define the context of the script: context Input:Feature "Specify the context"

● To valuate an attribute: X = 10, Input:Length "Enter the value"; or RefPlane = object:
Input:Feature "Specify the reference plane";

● To valuate a name: PartBody, Input:Name "Enter the body name" isa BodyFeature

● To define an import: import Input : FilePath "Enter the file name";

● To valuate a local variable: let X = Input : Feature "First Point to use";

● If you want to re-use a local variable.

Example:

let X = Input : Feature "First Point to reuse";
let Y = Input : Feature "Second Point to reuse";
....
L isa GSMLine
{
 LineType = 0;
 TypeObject isa GSMLinePtPt
 {
 FirstPoint = object: Input X; //X and Y are local
 SecondPoint = object: Input Y; // variables

 }

} ...

//

Here is the list of data that can be declared as an input:

Data type

parameter parameter type as declared in f(x)

file paths FilePath

feature names Name

edges when they are used to create features like chamfers or
fillets

Edge

points when they are used to create holes Point

features Feature

faces Face

axes Axis

length Length

Syntax

DataName = DefaultValue, Input: DataType "Comment"

or

DataName = DefaultValue, Input: DataType In: 'value1,value2,...';

where:

● DataName is the name of the data whose value is to be entered by the end-user.

● DefaultValue is the default value to be displayed in the "Enter Inputs" dialog box.

● DataType is the type of the data whose value is to be specified (see above).

● valuei is one of the values of a multiple value data.

Example

When the script below is executed:

myDocument isa CATPart
 {
 myPart isa Part
 {
 PartBody isa BodyFeature
 {
 L = 3.6 mm , Input: Length "Enter the pad length";
 X = 6.6 mm , Input: Length "Select a value in the list" In : `6.6mm,12 mm,100mm,3.3m` ;
 FeatureName = "Part1" , In : `Part1,Part2,Part3`;
 }
 }
 }

The following dialog box is displayed:

● The L and X values are to

be entered by the user.

● The L default value is set

to 3.6mm. If you wish to
modify this value, select
the L line, modify the
value in the 'L=' field then
click Apply. The X line is
then highlighted and the
'X=' field displays a four-
value list.

Select one of these values, click Apply then click OK to execute the script
and generate the document.

The FeatureName parameter which is a multiple value parameter is created
in the specification tree.

You can edit it to check the list of possible values.

from Keyword

Definition

Allows the user to copy a document from an existing document without maintaining any link.

Syntax

DocumentName isa DocumentType from FilePath

where:

● DocumentType is either CATProduct, CATPart or model.

● FilePath is the full path of the initial document.

To enter a file path you can:

● Use the Insert File Path command from the contextual menu or

● Use the Input keyword: h isa CATPart from Input : FilePath "Enter the file path ?"

Example
h isa CATPart from "c:\temp\CATPart"
 {
 h isa Part
 {
 // Additional features
 }
 }

context Keyword

Definition

Enables the user to define in which part of the specification tree the object will be created. The context keyword
may be of use in four different cases:

● It can be used

together with the
Input keyword. In
this case, the
user is prompted
to enter his
inputs.

context Input: FilePath
Part isa Part
{
 BBB isa BodyFeature
 {
 Mycylinder isa Cylinder { }
 }
}

● It can indicate a

document to be
used. In this
case, the "..." are
used.

context "Mypart.CATPart"
MyPart isa Part { }

● It can reference

an object
contained in the
document. In this
case the path
needs to be
specified
(between `...`).

context `My.CATPart\MyPart\PartBody`
CC isa Cylinder { }

● It can be used as

an argument
when the script is
generated with a
knowledge Expert
rule.

`$context$`

Syntax
● context Input: FilePath

or

● context "Mypart.CATPart"

or

● context `My.CATPart\MyPart\PartBody`

or

● `$context$`

Example
context Input: FilePath
Part isa Part
{
 BBB isa BodyFeature
 {
 Mycylinder isa Cylinder { }
 }
}

context "Part.CATPart"
Mypart isa Part { }

context `Part.CATPart\Mypart\PartBody`
CC isa Cylinder { }

isa Keyword

Definition

Creates a typed object or instantiates an object.

Syntax

ObjectName isa ObjectType

or

ObjectName isa InstanceName

where:

● ObjectName is the name of the object to be created.

● ObjectType is the type of the object to be created.

● InstanceName is the name of the object to be instantiated.

Example

In the example below, S0 is an instance of the Sketch.0 feature which is imported from the GPS.CATPart
document.

import "E:\GPS.CATPart";
myGps isa CATPart
 {
 myPart isa Part
 {
 PartB isa BodyFeature
 {
 S0 isa Sketch.0 {}
 pad0 isa Pad("S0")
 ...
 }
 }
 }

The name of the created object should be different from the object type
 (Box isa Box is incorrect).

 Variables

Variables are declared explicitly in your script. These variables are displayed as parameters in the specification
tree.

ALPHA = 45 deg;

Unlike in most script languages, a variable's scope is not really determined by where you declare it. From
anywhere in your script, you can access a variable by using the ../.. and ? operators. After the script is finished
running, the variable declared in your script still exists as a document parameter.

 Limitations

You should be aware of some restrictions:

● Instances of sketch-based features cannot be moved apart from their prototype.

● Any parameter used as an argument in a formula should be preceded by the ? symbol. The syntax

X = 2 * Y is invalid and should be replaced with X = 2 * ? Y.

● Unless a formula-defined parameter has not been initialized with the proper units, the value

calculated from the formula is dimensionless.
 Y = 0 kg ;
 Y = 2 * ? X ;

● A script error stops the reading and the execution of the script.

 Generative Script Objects

To display the list of the objects that can be instantiated in PKT, use the Object Browser available through the
Tools->Object Browser... command.
To know more about the Object Browser, see Using the Object Browser.

 Using The Get... Commands
The commands described in this section are the ones the user can access when using scripting language Editor
and right-clicking in the Editor window.

When writing a script containing the path of a feature contained in the specification tree, it is highly
recommended to use the Get Feature command to retrieve the internal name of this feature.

● Using the Get Axis Command

● Using the Get Edge Command

● Using the Get Surface Command

● Using the Get Feature Command

● Using the Insert File Path Command

The 'Get Axis' Command

This task explains how to create a chamfer by using the Get Axis command. This command
enables the user to interactively capture the generic name of an axis and to insert it into the
script instead of keying it in.

1. Access the Product Knowledge workbench, and open the Script Editor.

2. Enter the following script and click Generate. A pad is created.

myChamferDocument isa CATPart
{
 myPart isa Part
 {
 PartBody isa BodyFeature
 {
 P isa Pad
 {
 }

 }
 }
}

3. Under the P isa Pad block, add F isa Chamfer, right-click to open the contextual menu

and select the Get Axis command, and select an edge in your geometrical surface. The

script should be as follows:

myChamferDocument isa CATPart
{
 myPart isa Part
 {
 PartBody isa BodyFeature
 {
 P isa Pad
 {
 }
 F isa Chamfer("Edge:(Face:(Brp:(P;0:(Brp:(Sketch.1;2)));
 None:());Face:(Brp:(P;0:(Brp:(Sketch.1;3)));None:());
 None:(Limits1:();Limits2:()))"){}
 }
 }

}

4. Click the Generate button. The chamfer is created.

The "Get Edge" Command

This task explains how to create a chamfer by using the Get Edge command. This command
enables the user to interactively capture the generic name of an edge and to insert it into the
script instead of keying it in.

1. Access the Product Knowledge Template workbench, and open the Script Editor.

2. Enter the following script and click Generate. A pad is created.

myChamferDocument isa CATPart
{
 myPart isa Part
 {
 PartBody isa BodyFeature
 {
 P isa Pad
 {
 }

 }
 }
}

3. Under the P isa Pad block, add F isa Chamfer, right-click to open the contextual menu

and select the Get Edge command, and select an edge in your geometrical surface. The

script should be as follows:

myChamferDocument isa CATPart
{
 myPart isa Part
 {
 PartBody isa BodyFeature
 {
 P isa Pad
 { }
 F isa Chamfer("Edge:(Face:(Brp:(P;0:(Brp:(Sketch.1;2)));

None:());Face:(Brp:(P;2);None:());None:(Limits1:();Limits2:()))"){}
 }
 }
}

4. Click the Generate button. The chamfer is created.

The "Get Surface" Command

This task explains how to create a sketch on an existing face by using The Get Surface
command. This command enables the user to interactively capture the generic name of a
surface and to insert it into the script instead of keying it in.

1. Open the PktGetSurface.CATPart file.

2. Access the Product Knowledge Template workbench, and open the Script Editor. Enter

the following script:

import "f:\cube.CATPart";
myFaceDocument isa CATPart
{
 myPart isa Part
 {
 PartBody isa BodyFeature
 {
 P isa Pad{}
 S isa Sketch.1()

3. Position the cursor between the two parentheses of the last line of the above script,

right-click to open the contextual menu and select the Get Surface command.

4. Select the face whose name you want to capture. The full name is inserted at the cursor

location. Enter the end of your script. In our example, the final script is as follows:

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktGetSurface.CATPart

import "f:\PktGetSurface.CATPart";
myFaceDocument isa CATPart
{
 myPart isa Part
 {
 PartBody isa BodyFeature
 {
 P isa Pad{}
 S isa Sketch.1("Face:(Brp:(P;0:(Brp:(Sketch.1;2)));None:())")
 {
 }
 }
 }
}

The "Get Feature" Command

This task explains how to create a sketch on an existing face by using The Get Surface
command. This command enables the user to interactively capture the generic name of a
surface and to insert it into the script instead of keying it in.

1. Open the PktGetFeature.CATPart file.

2. Access the Product Knowledge Template workbench, and click the Create a Generative

Script icon.

3. In the editor, select the File->Open command, and select the PktGetFeature.CATGScript

file.

4. Position the cursor after FirstPoint = object: and select the Get Feature command in the

contextual menu.

5. Select a point in the geometry and add a semi-colon (;) at the end of the line.

6. Position the cursor after SecondPoint = object: and select the Get Feature command in

the contextual menu.

7. Select another point in the geometry and add a semi-colon (;) at the end of the line.

Your script should now look like the one below:

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktGetFeature.CATPart
file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktGetFeature.CATGScript

8.

 Click the Generate button. The line is created.

The "Insert File Path" Command

This task explains how to use the Insert File Path command. This command is one of the
methods you can use to specify a path in a script.

1. Access the Script Editor and enter any instruction requiring a file path specification

(import in the example below).

2. Position the cursor where the path is to be specified.

3. Right-click and select the Insert File Path command from the contextual menu.

4. In the dialog box which is displayed, select the appropriate file. Click Open to go back

to the script editor.

The full path is inserted at the cursor place. Check that the statement is ended by a

semi-colon.

 Specifying a Context

After a document has been generated, you can add new features to this document by executing
another script provided you declare in this other script the document you want to add new
features to. This declaration is made by using the context keyword. To know more about this
keyword, see context keyword.

1. Re-run The Pocket Calculator scenario.

2. Enter the script below into the editor (close the editor from before and reopen a new

window or delete all the instructions in the current editor).

context `calc.CATPart/part1/partbody`
h1 isa Hole ()
{ Diameter = 4mm; }

The path specified in the context statement must be surrounded by back quotes.

3. Position the cursor between the parentheses right after the Hole statement, select the

Get Feature command from the contextual menu then select a point on the calculator

(see the figure below for the location of that point). Then click 'Generate'. This is what

you get on screen.

file:///E|/www/meidocr14/Doc/online/cfyugpkt_C2/cfyugScpcontext.htm

The h1 feature is added to the document.

 Declaring Input Data

This task explains how to declare data as to-be-entered by the user and how to fill in the dialog panel
which is displayed before the document is generated. Not all data can be declared as inputs.

Data can be entered by the user provided they have been declared as Inputs by using the Input
keyword in the script. When the script is generated, a dialog box displays the list of values to be
entered in order to generate the document. See the Input Keyword for more information on this
keyword.

 File Paths, Feature Names and Parameter Values

1. In the Product Knowledge Template workbench, click the icon. The Knowledgeware

Script Editor is displayed.

2. Enter the script below

import Input : FilePath "Name of the CATPart to be imported";
Pad1 isa CATPart
 {
 mypad isa Part
 {
 X = 10mm, Input : Length "Enter the pad length";
 PartBody, Input:Name "New PartBody Name" isa BodyFeature
 {
 S isa Sketch.1{}
 P isa Pad("S"){}
 }
 }
 }

3. Click Generate. The dialog box below is displayed:

4. To enter the FilePath input, click Select then select the PktSketchToImport.CATPart sample.

Click Apply.

5. The X value is now highlighted in the dialog box and you are prompted to enter the X value,

that is the pad length. To use the default value, just click Apply. Otherwise, enter a new value

in the X field, then click Apply.

6. If need be, repeat this operation for the Name input. Click Apply to enter the Name value. The

OK button should now be active. (The OK button is grayed out as long as there is still one or

more inputs to be specified). Click OK. The extruded pad below is generated:

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktSketchToImport.CATPart

Edges

1. In the Product Knowledge Template workbench, click the icon. The Knowledgeware

Script Editor is displayed.

2. Enter the script below:

MyBox isa CATPart
 {
 BoxPart isa Part
 {
 PartBody isa BodyFeature
 {
 Box1 isa Box
 {
 Width = 20.0 mm ;
 Height = 25.0 mm ;
 Length = 15.0 mm ;
 }
 }
 }
 }

3. Click Generate. A box is displayed in the geometry area.

4. Back to the script editor. Add the statements related to the fillet and hole creations to your

script:

MyBox isa CATPart
 {
 BoxPart isa Part
 {
 PartBody isa BodyFeature
 {
 Box1 isa Box
 {
 Width = 20.0 mm ;
 Height = 25.0 mm ;
 Length = 15.0 mm ;
 }
 /* Added statements - Start */
 fillet2 isa ConstantEdgeFillet (fillet2 isa ConstantEdgeFillet
 ("Edge:(Face:(Brp:(Pad.1;0:(Brp:(Sketch.1;3)));None:();Cf9:());Face:(Brp:
 (Pad.1;2);None:();Cf9:());None:(Limits1:();Limits2:());Cf9:())"))
 {
 Radius =2.0 mm;
 }
 /* Added statements - End */
 }
 }

 }

5. Click Generate. The fillet is created.

Features

1. In the Product Knowledge Template workbench, click the icon. The Knowledgeware

Script Editor is displayed.

2. Use the File->Open command to open the PktInputFeature0.CATGscript macro which is

delivered as a sample. Don't remove the comments corresponding to the line creation.

3. Click Generate. The Po1 and Po2 points are created in the geometry area and the specification

tree is updated accordingly.

4. In the script editor, remove the comments in order to create L, then click Generate. The

"Enter Inputs" dialog box is displayed. Only one input is to be entered by the end-user. Click

Select, then select the Po1 feature in the specification tree.

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktInputFeature0.CATGScript

5. Click Apply then OK. The line joining Po1 and Po2 is created.

 Reusing Input Data

The scenario below explains how to reuse input data using the let keyword. To know more about this
keyword, see let Keyword.

1. Re-run The Pocket Calculator scenario. Keep the generated document open.

2. Enter the script below in the editor:

context Input : Feature "Select OBody"
P1 isa GSMPoint
 {
 PointType = 0;
 TypeObject isa GSMPointCoord
 {
 X = 50mm;
 Y = 0mm;
 Z = 150mm;
 }
 }
P2 isa GSMPoint
 {
 PointType = 0;
 TypeObject isa GSMPointCoord
 {
 X = 50mm;
 Y = 100mm;
 Z = 150mm;
 }
 }

Line1 isa GSMLine
 {
 LineType= 0 ;
 TypeObject isa GSMLinePtPt
 {
 FirstPoint = object : Input : Feature "Select WindowP3";
 SecondPoint = object: ../../P1;
 }
 }

Line2 isa GSMLine
 {
 LineType= 0 ;
 TypeObject isa GSMLinePtPt
 {
 FirstPoint = object : Input : Feature "Select WindowP3";
 SecondPoint = object: ../../P2;
 }
 }

3. Click Generate. The Enter Inputs dialog box is displayed. You are prompted to enter the

OBody feature, then twice the WindowP3 feature. Click Cancel and proceed to the next step.

4. Replace the current script with the one below:

let X = Input: Feature "Select WindowP3";
context Input : Feature "Select OBody"

P1 isa GSMPoint
 {
 PointType = 0;
 TypeObject isa GSMPointCoord
 {
 X = 50mm;
 Y = 0mm;
 Z = 150mm;
 }
 }
P2 isa GSMPoint
 {
 PointType = 0;
 TypeObject isa GSMPointCoord
 {
 X = 50mm;
 Y = 100mm;
 Z = 150mm;
 }
 }

Line1 isa GSMLine
 {
 PointType = 0 ;
 TypeObject isa GSMLinePtPt
 {
 FirstPoint = object : Input X;
 SecondPoint = object: ../../P1;
 }
 }

Line2 isa GSMLine
 {
 LineType= 0 ;
 TypeObject isa GSMLinePtPt
 {
 FirstPoint = object : Input X;
 SecondPoint = object: ../../P2;
 }
 }

5. Click Generate. The dialog box below is displayed:

6. Click Select then select the WindowP3 feature. Click Apply. The second input line

is highlighted. Click Select then select the OBody feature. Click Apply then click OK.

Two lines are created. WindowP3 is the point where they intersect.

 Tips and Tricks

Specifying a File Path (three methods)
Importing Sketches: Recommendation

Rectangular Pattern not generated
About Generic Naming

Message: "Property does not exist"
Message: "Feature could not be updated"

Specifying Strings: Recommendation

 About Generic naming
Generic naming is a CATIA technique which creates a label whenever an element has been selected interactively. This label is
a coded description of the selected element. When you specify a fillet to be applied to a face, you must select interactively the
face definition but prior to doing this you must of course have generated the face to be filleted. This is why scripts requiring
face, point or edge definitions cannot be generated in one shot. You don't have to mind about the generic naming itself as it
is automatically captured from the geometry area. The thing you have to mind about is the order your instructions are to be
written and executed in the script.

Example

The "mechanical" part of the PktPocketCalculator.CATGScript sample is to be generated in two shots:

1. import the necessary sketches and generate the pads:

import Input : FilePath "Select the PktInitialSketch.CATPart sample" ;

calc isa CATPart
{
part1 isa Part
{

partbody isa BodyFeature
{
S1 isa Sketch.1 {}
S2 isa Sketch.2 {}

pad1 isa Pad("S2")
{
FirstLength = 0.5mm;
SecondLength=2.0mm;
}

fillet1 isa ConstantEdgeFillet ("Face:(Brp:(pad1;0:(Brp:(S2;1)));None:())")
{
Radius =1.0 mm;
}

pattern1 isa Pattern[4,4] of fillet1
{
Step1 =7.0 mm;
Step2 = 7.0 mm;
}
/*
pad0 isa Pad("S1")
{
FirstLength = 5.0mm;
SecondLength=0mm;
}
*/
/*
fillet2 isa Fillet (select the cylindrical face of pad0)
{
Radius =2.0 mm;
}
*/
}
}
}

2. Remove the comments before the following lines and click Generate:

pad0 isa Pad("S1")

{

FirstLength = 5.0mm;

SecondLength=0mm;

}

3. Capture the fillet1 and fillet2 definitions, remove the comments and re-execute the script:

 import Input : FilePath "Select the PktInitialSketch.CATPart sample" ;

calc isa CATPart
{
part1 isa Part
{

partbody isa BodyFeature
{
S1 isa Sketch.1 {}
S2 isa Sketch.2 {}

pad1 isa Pad("S2")
{
FirstLength = 0.5mm;
SecondLength=2.0mm;
}

fillet1 isa ConstantEdgeFillet (capture the face using the Get surface command)
{
Radius =1.0 mm;
}

pattern1 isa Pattern[4,4] of fillet1
{
Step1 =7.0 mm;
Step2 = 7.0 mm;
}

pad0 isa Pad("S1")
{
FirstLength = 5.0mm;
SecondLength=0mm;
}

/*
fillet2 isa ConstantEdgeFillet (capture the face using the Get surface command)
{
Radius =2.0 mm;
}
*/
}
}
}

 Message "property does not exist..."
Check in the browser that the attribute name is correct. For attributes of list type (Fillets and Chamfers), check
the indexes. The indexes specified must be consecutive from 1 to n without any gaps.

The script below displays the message: "property does not exist: CstEdgeRibbon.2 on: EdgeFillet.1" at
generation

Boite isa CATPart
{
boite isa Part
{
partbody isa BodyFeature
{
pad1 isa Pad
{
FirstLength = 0.5mm;
SecondLength=2.0mm;
}

fillet1 isa ConstantEdgeFillet ("Face:(Brp:(pad1;2);None:())")
{
CstEdgeRibbon.2\ Radius =1.0 mm;
}
}
}
}

 Message "feature could not be updated"
This message is displayed whenever the system does not find the required data to build the specified feature.

In the PktPocketCalculator.CATGScript sample, replacing the WindowCurve and Fill2 definitions with the script
below displays the message "Fill2 could not be updated".

WindowCurve isa GSMCurve
 {
 Elements[1] = object : ..\WindowP1;
 Elements[2] = object : ..\WindowP2;
 // Elements[3] = object : ..\WindowP3;
 Elements[4] = object : ..\WindowP4;
 Elements[5] = object : ..\WindowP1;
 }

Fill2 isa GSMFill
 {
 Boundary = object : ..\WindowCurve;
 }

Fill2 cannot be created because one element of the list required to defined the WindowCurve feature has been
removed. WindowCurve is created but it is not a closed curve and it cannot be filled.

Features that "could not be generated" are displayed as invalid features in the specification tree. Editing an
invalid feature can help you determine which data is missing. Another way to investigate consists in rebuilding
interactively the feature that could not be built by the script.

 Specifying a File Path (3 methods)
Method 1: Use the Insert File Path command from the contextual menu.

To do this, position the cursor where the file path is to be specified, then right-click and select the Insert File
Path command from the contextual menu. In the dialog box which is displayed, select the appropriate path,
then click Open. This insert the full path between quotation marks into your script.

Method 2: Define your linked document strategy.

Use the Link Document Localization command of the CATIA Tools->Options... menu to define your linked
document strategy. Choosing an appropriate strategy allows you to specify only the short path of a document.
Example:
If the E:\www\samples folder is specified in the 'Search Order' of the 'Other Folders' Configuration, you can
write:
import "PktInitialSketch.CATPart" ;
instead of
import "E:\www\samples\PktInitialSketch.CATPart" ;

See to the CATIA Infrastructure User's Guide for how to use the Link Document Localization command.

Method 3: Use the Input : FilePath keyword.

Input : FilePath comment ;
displays a dialog box which prompts you to select a file path. The file path being selected, you must click Apply
to enter the next input data or make the OK button active.

 The Rectangular Pattern is not Generated
Sorry! The present version of the Generative Script only allows you to generate rectangular pattern in the xy
plane.

 Importing Sketches: Recommendation
When designing a document to be generated by a script, it is better to group all the required sketches in a
single file. That way:

● you minimize the overall size of your sketch-related data

● no matter the method used to specify the input file, you just have to specify the path once

● the design of the final document is made easier. You get a global view of the sketches on which the

other features rely.

 Specifying Strings: Recommendation
Double quotation marks as well as single quotation marks of apostrophe type (`) can be used to delimit
strings. Single quotations marks (`) must be used to enclose character strings which contain other strings.

Here is an example:

RuleBody =`if P->Name() == "Wing" Message("This is a wing")`;

Use Cases

Assembly Template The Tow Hook

Scripting Template

The Ladder

The Pocket Calculator

The Tow Hook

The scenario developed below is intended to show how to create and instantiate an assembly
template into a .CATProduct file.

To carry out this scenario, you will need the following files:

PktTowHook.CATProduct

PktTowHook_Result.CATProduct

M39.CATPart
Liner_Step3.CATPart
Axis_Step3.CATPart
Support.CATPart

PktDestinationProduct.CATProduct Input_Axis.CATPart
Part32.CATPart

Creating the Assembly Template

1. Open the PktTowHook.CATProduct file. The following image displays.

2. From the Start->Mechanical Design menu, access the Drafting workbench. The New

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktTowHook.CATProduct
file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktTowHook_result.CATProduct
file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/M39.CATPart
file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/Liner_step3.CATPart
file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/Axis_step3.CATPart
file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/Support.CATPart
file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktDestinationProduct.CATProduct
file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/Input_Axis.CATPart
file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/Part32.CATPart
file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktTowHook.CATProduct

Drawing Creation Window displays.

3. Select the All views configuration and click OK.

4. The drawing corresponding to the pad is generated.

4. Save your drawing and close the file. Click here to see the generated drawing.

5. Go back to the
PktTowHook.CATProduct file to create
an assembly template.
From the Insert menu, select the
Document Template Creation ...
command. The Document Template
Definition window displays.

6. In the Document Template Definition window, define the document template. To do

so, proceed as follows:

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktHookDrawing.CATDrawing

● In the Documents tab, click the Add... button and select the drawing that you

have just selected or use the PktHookDrawing.CATDrawing file.

● Click the Inputs tab. In the geometry, expand the Support node and select the

following items located below the Isolated External References node:

● Surface.1

● Curve.1

● Surface.2

● Select Surface.1 and assign it a new name: PlanarFace

● Select Curve.1 and assign it a new name: Center_CircularEdge

● Select Surface.2 and assign it a new name: Axis_CylindricalFace

● Click the Published Parameters tab and click the Edit List... button.

● In the Select parameters to insert window, select the

Support\Tube_Thickness parameter using the arrow button.

● Click OK to validate. The Document template displays below the

KnowledgeTemplates node.

7. Save your file and close it. Click here to open the result .CATProduct file.

Instantiating the Assembly Template

8. Open the PktDestinationProduct.CATProduct file. The following image displays.

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktHookDrawing.CATDrawing
file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktTowHook_result.CATProduct
file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktDestinationProduct.CATProduct

9. From the Start->Knowledgeware menu, access the Product Knowledge Template

workbench.

10. Click the Instantiate from Document icon () and select the

PktTowHook_result.CATProduct file in the File Selection window. The Insert Object

dialog box displays.

11. Select the visible face of the

pad. Face displays in the Insert

Object dialog box.

12. Select the pocket in the

Geometry.

13. Expand the Input_Cylinder

node and select the Extract.1.

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktTowHook_result.CATProduct

14. Click OK to validate. The assembly template is instantiated (Click here to open the result

file)...

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktDestinationProduct_result.CATProduct

and the associated drawing is updated accordingly (click here to open the generated drawing).

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktHookDrawing_result.CATDrawing

The Ladder

The scenario below illustrates the following generative script capabilities:

● Multiple value parameters

● Part design patterns

● Knowledge advisor rules

● Formulas using the ? operator.

To carry out this scenario, you need the PktLadderSketch.CATPart sample which provides you
with the necessary sketches.

1. Select the Knowledgeware->Product Knowledge Template command from the

Start menu.

2. Click the icon. The Knowledgeware Script Editor is displayed.

3. Use the File->Open command to open the PktLadder.CATGScript document, then click

Generate. The Enter Inputs dialog box below is displayed.

4. Click Select, then select the PktLadderSketch.CATPart sample in the file selection box.

Click Apply. The H input is now highlighted. The H field displays a three value list.

5. Select one of the values, 3500mm for example. Click Apply, then click OK. The
document is generated.

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktLadderSketch.CATPart
file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktLadder.CATGScript
file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktLadderSketch.CATPart

The Pocket Calculator

The scenario developed below is intended to show how to combine part design and shape
design features to generate a simple pocket calculator. It comprises the steps and instructions
required by the user for each step.

To carry out the scenario below, you need to have on hand the basic sketches from which you
create your mechanical features. These basic sketches are available in the
PktInitialSketch.CATPart sample. The shape design features are created from scratch.

To carry out the scenario below, we use the PktInitialSketch.CATPart sample (~46KB) along
with the PktPocketCalculator.CATGScript script (~8KB). Check the size of the resulting
document. It should be around 250KB.

1. Select the Knowledgeware->Product Knowledge Template command from the

Start menu.

2. Click the icon. The Knowledgeware Script Editor is displayed.

3. Use the File->Open command to open the PktPocketCalculator.CATGScript document,

then click Generate. The dialog box below is displayed:

4. Click Select. The Insert File Path dialog box is displayed. Select the

PktInitialSketch.CATPart sample, then click Open. You are back to the Enter Inputs

dialog box.

5. Click Apply, then click OK. The document generation starts.

file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktInitialSketch.CATPart
file:///E|/www/meidocr14/Doc/online/pktug_C2/samples/PktPocketCalculator.CATGScript

This is what you get onscreen, once the generation process is over.

Back to the script:

● The import statement below displays an input box whereby you can specify a

sketch file. The pads created in the script all rely on these sketches.

import Input:FilePath "Select the PktInitialSketch.CATPart sample";

● The script is divided into two sections:

a) The part design features are enclosed by the BodyFeature
b) The shape design features are enclosed by the OpenBodyFeature.

calc isa CATPart
{
part1 isa Part
{
partbody isa BodyFeature
{
// your mechanical features are described here
}

OBody isa OpenBodyFeature
{
// your shape design features are described here
}
}
}

The fillet and pattern type features cannot be generated in one shot. You must first of
all create the pad0 and pad1 objects, then add to your script the statements necessary
to generate fillets and patterns. See the Fillet Object.

Reference

The packages listed below are those displayed in the Script Browser.

Basic Wireframe Package GSD Package

GSD Shared Package Knowledge Expert

Mechanical Modeler Part Design

Part Shared Package Standard

Using the Object Browser

The object browser guides you when writing a script. It allows you to access the keywords, operators and
feature attributes that can be used when working with Product Knowledge Template.

The packages displayed in the left part of the browser are those you selected from the Tools-
>Options... command.

To add or remove packages, proceed as follows:

1. Select the Tools->Options... command to open the Options window, then select General-
>Parameters and Measure, and click the Language tab.

2. In the Language field of the Knowledge tab, check Load extended language libraries
and select the libraries.

To access the Product Knowledge Template Object Browser, proceed as follows:

1. Access the Product Knowledge Template workbench by selecting the Knowledgeware-> Product

Knowledge Template command from the Start menu.

2. Click the icon. The Knowledgeware Script Editor is displayed.

3. Select the Tools->Object Browser... command from the Script Editor toolbar. The following window

opens:

From this window, you can manipulate
the list of objects supported by
Generative Knowledge using their
attributes.

● The left part of the browser
displays the packages
available:
BasicWireframePackage,
GSDPackage,
GSDSharedPackage,
KnowledgeExpert,
MechanicalModeler,
PartDesign,
PartSharedPackage,
Standard.

 ● The central part displays the
list of objects belonging to
this category.

● The right part displays the

attributes allowing you to

manipulate these objects (if

any).

The Back icon.
To return to your last interaction in the wizard. Has no action on the script editor.

The Forward icon.
To go forward to your next interaction in the wizard when moving through a series of
interactions.

The Attribute Type icon.
This icon is not available in the current version of the product.

The Inheritance icon.
To return to the root object.

The Insert icon.
To insert the object name in the script.

 Basic Wireframe Package

GSMCircle
GSMLine
GSMPlane
GSMPoint

 GSMCircle

Definition:

A GSMCircle is a circle:

● generated by the Generative
Shape Design product.

● available in the
BasicWireFrame Package.

To know more about circles, see
the Generative Shape Design
User's Guide.

Attributes:
PointType

A point is defined by the following attributes:
● CircleType: The syntax to be used is CircleType = i, i corresponding to the type of circle that

you want to create.

● CircleRelimitation: The syntax to be used is CircleRelimitation =.

● EndAngle: The syntax to be used is EndAngle = xxxdeg.

● StartAngle: The syntax to be used is StartAngle =xxxdeg.

 Please find below a table listing the existing types of circles that you can create and the digit to
indicate.

 Plane Type in GSD Plane Type in the
Package Corresponding digit

 Three Points GSMPCircle3Points 3

 Center and Radius GSMCircleCtrRad 0

 Center and Point GSMCircleCtrPt 1

As mentionned above, you may create 3 different circle sub-types. Please find below a description of each sub-
type, as well as its attributes and the syntax to use.

Three Points (GSMCircle3Points)

The sub-type to be used in this case is GSMCircle3Points which enables you to create a circle passing through
3 points. The following attributes are available for this sub-type:

● Element1: First point

● Element2: Second point

● Element3: Third point

● Support: Support surface onto which the
circle will be projected (optional)

 These attributes can be combined as follows:

Combination

● Element1 which is defined by the syntax below:
Element1 = object: ..\Point.1;

● Element2 which is defined by the syntax below:
Element2 = object: ..\Point.2;

● Element3 which is defined by the syntax below:
Element3 = object: ..\Point.3;

● Support which is defined by the syntax below:
Support = object: ..\Extrude.1;

Center and Radius (GSMCircleCtrRad)

The sub-type to be used in this case is GSMCircleCtrRad which enables you to create a circle by indicating its
center and its radius. The following attributes are available for this sub-type:

● Center: Point that will be the center
of the circle.

● FirstDirection

● Geodesic

● Radius: Radius of the circle.

● Support: Support plane or surface
onto which the circle is to be created.

These attributes can be combined as follows:

Combination

● Center which is defined by the syntax below:
Center = object: ..\Point.1;

● Radius which is defined by the syntax below:
Radius = 120mm;

● Support which is defined by the syntax below:
Support = object: ..\Extrude.1;

Center and point (GSMCircleCtrPt)

The sub-type to be used in this case is GSMCircleCtrPt which enables you to create a circle by indicating its
center and a point. The following attributes are available for this sub-type:

● Center: Point used as the center of the
circle.

● Geodesic: Curve.

● RefPoint: Second point used to create
the circle.

● Support: Support plane or surface where
the circle is to be created.

Combination

● Center which is defined by the syntax below:
Center = object: ..\Point.1;

● RefPoint which is defined by the syntax below:
RefPoint = object: ..\Point.1;

● Support which is defined by the syntax below:
Support = object: ..\Extrude.1;

 GSMLine

Definition:

A GSMLine is a line :

● generated by the Generative Shape Design
product.

● available in the BasicWireFrame Package.

To know more about lines, see the Generative
Shape Design User's Guide.

Attributes:
LineType

 A line is defined by its type. The attribute to be used is LineType. The syntax to be used is:
LineType = i, i corresponding to the type of line that you want to create.

 Please find below an equivalence table listing the existing types of lines that you can create and
the digit to indicate.

 Line Type in GSD Line Type in the Package Corresponding digit

 Point to Point GSMLinePtPt 0

 Point-Direction GSMLinePtDir 1

 Angle to Curve GSMLineAngle 2

 Tangent to Curve GSMLineTangency 3

 Normal to surface GSMLineNormal 4

 Intersection betw. 2 planes GSMLineBiTangent 5

As mentioned above, you may create 7 different line sub-types. Please find below a description of each sub-
type, as well as its attributes and the syntax to use.

Point to Point Line (GSMLinePtpt)

The sub-type to be used in this case is GSMLinePtpt which defines the line extremities. The following
attributes are available for this sub-type:

● FirstPoint (feature)

● SecondPoint (feature)

● Support (feature)

● Length1 (length, optional for both
combinations)

● Length2 (length, optional for both
combinations)

 These attributes can be combined as follows:

1st combination 2nd combination

● the FirstPoint which is defined by the syntax
below:
FirstPoint = object: ..\..\theFirstPoint;

● the SecondPoint which is defined by the syntax
below:
SecondPoint = object: ..\..\theSecondPoint;

● Length1 which is defined by the syntax below:
Length1=200mm;

● Length2 which is defined by the syntax below:
Length2=150mm;

● the FirstPoint which is defined by the syntax
below:
FirstPoint = object: ..\..\theFirstPoint;

● the SecondPoint which is defined by the syntax
below:
SecondPoint = object: ..\..\theSecondPoint;

● the Support

Point-Direction (GSMLinePtDir)

The sub-type to be used in this case is GSMLinePtDir which defines the line direction. The following attributes
are available for this sub-type:

● Length1

● Length2

● Direction

● Orientation

● RefPoint

● Support

These attributes can be combined as follows:

Combination

● Length1 which is defined by the syntax below:
Length1 = 100mm;

● Length2 which is defined by the syntax below:
Length2 = 10mm;

● Direction which is defined by the syntax below:
Direction = object: ..\..\Plane.2;

● RefPoint which is defined by the syntax below:
RefPoint = object: ..\..\Point.2;

● Support which is defined by the syntax below:
SecondPoint = object: ..\..\'xy plane';

Tangent to Curve (GSMLineTangency)

The sub-type to be used in this case is GSMLineTangency. The following attributes are available for this sub-
type:

● Curve: Reference curve used to define
the tangency.

● Length1

● Length2

● Orientation

● RefPoint: Reference point used to
define the tangency.

● Support

These attributes can be combined as follows:

Combination

● Curve which is defined by the syntax below:
Curve = object: ..\..\Spline.2;

● Length1 which is defined by the syntax below:
Length1 = 100mm;

● Length2 which is defined by the syntax below:
Length2 = 10mm;

● RefPoint which is defined by the syntax below:
RefPoint = object: ..\..\Point.2;

● Support which is defined by the syntax below:
SecondPoint = object: ..\..\'xy plane';

Normal to surface (GSMLineNormal)

The sub-type to be used in this case is GSMLineNormal. The following attributes are available for this sub-
type:

● Orientation

● RefPoint

● RefSkin

 These attributes can be combined as follows:

Combination

● RefPoint which is defined by the syntax below:
RefPoint = object: ..\..\Point.2;

● Support which is defined by the syntax below:
RefSkin = object: ..\..\Extrude.1;

 GSMPlane

Definition:

A GSMPlane is a plane:

● generated by the Generative Shape Design product.

● available in the BasicWireFrame Package.

To know more about planes, see the Generative Shape Design
User's Guide.

Attributes:
PlaneType

 A plane is defined by its type. The attribute to use is PlaneType. The syntax to be used is: PlaneType = i, i
corresponding to the type of plane that you want to create.

 Please find below a table listing the existing types of planes that you can create and the digit to indicate.

 Plane Type in GSD Plane Type in the Package Corresponding digit

 Equation GSMPlaneEquation 0

 Through 3 points GSMPlane3Points 1

 Through 2 lines GSMPlane2Lines 2

 Through a point and a line GSMPlane1line1Pt 3

 Normal to a curve GSMPlane1Curve 4

 Tangent to a surface GSMPlaneTangent 5

 Normal to a plane GSMPlaneNormal 6

As mentionned above, you may create 7 different plane sub-types. Please find below a description of each sub-type, as well as
its attributes and the syntax to use.

Equation (GSMPlaneEquation)

The sub-type to be used in this case is GSMPlaneEquation which enables you to create a plane by using an equation. The
following attributes are available for this sub-type:

● A (First component of the equation)

● B (Second component of the equation)

● C (Third component of the equation)

● Length

● RefPoint (point used to position the plane through this
point)

 These attributes can be combined as follows:

1st Combination 2nd Combination

● A which is defined by the syntax below:
A=31; //A value is required

● B which is defined by the syntax below:
B=-47; //A value is required

● C which is defined by the syntax below:
C=-24; //A value is required

● Length: enables the user to indicate the required
length. It is defined by the syntax below:
Length=24mm

● A which is defined by the syntax below:
A=31; //A value is required

● B which is defined by the syntax below:
B=-47; //A value is required

● C which is defined by the syntax below:
C=-24; //A value is required

● RefPoint which is defined by the syntax below:
RefPOint = object: ..\Point ;

Through 3 points (GSMPlane3Points)

The sub-type to be used in this case is GSMPlane3Points which creates a plane passing through 3 points. The following
attributes are available for this sub-type:

● Element1 (First point)

● Element2 (Second point)

● Element3 (Third point)

These attributes can be combined as follows:

Combination

● Element1 which is defined by the syntax below:
Element1 = object: ..\Point.1;

● Element2 which is defined by the syntax below:
Element2 = object: ..\Point.2;

● Element3 which is defined by the syntax below:
Element3 = object: ..\Point.3;

Through 2 Lines (GSMPlane2Lines)

The sub-type to be used in this case is GSMPlane2Lines which enables to create a plane passing through 2 lines. The following
attributes are available for this sub-type:

● Element1 (First line)

● Element2 (Second line)

Combination

● Element1 which is defined by the syntax below:
Element1 = object: ..\Line.1;

● Element2 which is defined by the syntax below:
Element2 = object: ..\Line.2;

Through a Point and a Line (GSMPlane1line1Pt)

The sub-type to be used in this case is GSMPlane1Line1Pt which enables to create a plane passing through a line and a point.
The following attributes are available for this sub-type:

● Line: Line used to create the plane.

● RefPoint: Point used to create the plane.

The attributes should be used as follows:

Combination

● Line which is defined by the syntax below:
Line = object: ..\Line.1;

● RefPoint which is defined by the syntax below:
RefPoint = object: ..\Point.2;

Normal to a Curve (GSMPlane1Curve)

The sub-type to be used in this case is GSMPlane1Curve which enables you to create a plane normal to a curve at a specified
point.

● Element1: Line

This attribute is to be used as follows:

Combination

● Line which is defined by the syntax below:
Line = object: ..\Spline.1;

Tangent to a Surface (GSMPlaneTangent)

The sub-type to be used in this case is GSMPlaneTangent which enables you to create a plane tangent to a surface at a
specified point. The following attributes are available for this sub-type:

● RefPoint (Point)

● Support (Surface)

These attributes are to be used as follows:

Combination

● Support which is defined by the syntax below:
Support = object: ..\Spline.1;

● RefPoint which is defined by the syntax below:
RefPoint = object: ..\Point.4;

Normal to a Plane (GSMPlaneNormal)

The sub-type to be used in this case is GSMPlaneNormal. The following attributes are available for this sub-type:

● Curve: Reference curve used to create the plane.

● RefPoint: Reference point used to create the plane.

These attributes are to be used as follows:

Combination

● Curve which is defined by the syntax below:
Curve = object: ..\Spline.1;

● RefPoint which is defined by the syntax below:
RefPoint = object: ..\Point.4;

 GSMPoint

Definition:

A GSMPoint is a point:

● generated by the Generative Shape
Design product

● available in the BasicWireFrame
Package.

To know more about points, see the
Generative Shape Design User's Guide.

Attributes:
PointType

 A point is defined by its type. The attribute to use is PointType. The syntax to be used is:
PointType = i, i corresponding to the type of point that you want to create.

 Please find below a table listing the existing types of points that you can create and the digit to
indicate.

 Plane Type in GSD Plane Type in the
Package Corresponding digit

 Coordinates GSMPointCoord 0

 On surface GSMPointOnSurface 1

 On curve GSMPointOnCurve 2

 On plane GSMPointOnPlane 3

 Circle center GSMPointCenter 4

As mentionned above, you may create 5 different point sub-types. Please find below a description of each sub-
type, as well as its attributes and the syntax to use.

Coordinates (GSMPointCoord)

The sub-type to be used in this case is GSMPointCoord which enables you to create a coordinate point. The
following attributes are available for this sub-type:

● RefPoint (Reference point, optional). If
specified, x, y, and z are indicated in a
mark whose origin is this reference point.

● X (First coordinate)

● Y (Second coordinate)

● Z (Third coordinate)

 These attributes can be combined as follows:

Combination

● RefPoint (Reference point, optional)

● X which is defined by the syntax below:
X = 10mm;

● Y which is defined by the syntax below:
Y = 10mm;

● Y which is defined by the syntax below:
Z = 10mm;

On surface (GSMPointOnSurface)

The sub-type to be used in this case is GSMPointOnSurface which creates a point on a plane. The following
attributes are available for this sub-type:

● Direction: Element taking its orientation
as reference direction or a plane taking
its normal as reference direction

● RefPoint: Reference point. By default, the
surface middle point is taken as
reference.

● Support: Surface where the point is to be
created.

● Values: Distance along the reference
direction used to display a point.

These attributes can be combined as follows:

Combination

● Direction which is defined by the syntax below:
Direction = object: ..\Line.1;

● Support which is defined by the syntax below:
Support= object: ..\Extrude.1;

● Values which is defined by the syntax below:
Values = 12mm;

On curve (GSMPointOnCurve)

The sub-type to be used in this case is GSMPointOnCurve which enables to create a point on a curve. The
following attributes are available for this sub-type:

● Boundary: Not available.

● RefPoint: Reference point. If not
specified, it is the extremity of the curve.

● Support: Curve

● Values: Distance between the reference
point and this point.

Combination

● Refpoint which is defined by the syntax below:
RefPoint= object: ..\Point.1;

● Support which is defined by the syntax below:
Support = object: ..\Line.1;

● Values which is defined by the syntax below:
Values = 12mm;

On plane (GSMPointOnPlane)

The sub-type to be used in this case is GSMPointOnPlane. It creates a point on a plane. The following
attributes are available for this sub-type:

● Direction (optional). When specified,
indicates the direction

● H: Vector.

● RefPoint: point used to define a reference
for computing coordinates in the plane.

● Support: Plane on which the point will be
created.

● V: Vector.

The attributes should be used as follows:

Combination

● Direction which is defined by the syntax below:
Direction = object: ..\Line.1;

● H which is defined by the syntax below:
H = 150mm;

● RefPoint which is defined by the syntax below:
RefPoint= object: ..\Point.1;

● Support which is defined by the syntax below:
Support = object: 'xy plane'

● V which is defined by the syntax below:
V = 150mm;

Circle Center (GSMPointCenter)

The sub-type to be used in this case is GSMPointCenter which enables you to define the center of a circle.

● Curve: circle, circular arc, or ellipse.

This attribute is to be used as follows:

Combination

● Curve which is defined by the syntax below:
Curve = object: ..\Extrude.1;

 Part Design

Please find below a table listing the types available in the Part Design package.

Box Chamfer Cone

Counterbored Hole Counterdrilled Hole Countersunk Hole

Cylinder Hole Pad

Pocket RemoveFace ReplaceFace

Shaft Shell SimpleHole

SoldCombine Split TaperedHole

Thickness ThickSurface Torus

Box
Definition:

A box is a pad extruded from a rectangular sketch.

Attributes:

 A box is defined by the following attributes:
● Length which is the pad first limit. The syntax to be used is Length = 10mm.

● Width which is the pad width. The syntax to be used is Width = 20mm.

● Height which is the pad height. The syntax to be used is Height = 12mm.

MyBox isa CATPart
 {
 BoxPart isa Part
 {
 PartBody isa BodyFeature
 {
 // Create a box
 Box1 isa Box
 {
 // Specify the box properties
 Width = 20.0 mm ;
 Height = 25.0 mm ;
 Length = 15.0 mm ;
 }
 }
 }

 }

Chamfer
Definition:

A cut through the thickness of the
feature at an angle, giving a sloping
edge.

Attributes:

 A chamfer is defined by the following attributes:
● Angle. The syntax to be used is Angle = 20 deg;

● Length1. The syntax to be used is Length1 = 5 mm;

● Length2. The syntax to be used is Length2 = 5 mm;

Important Notes:
● A chamfer has a Length2 attribute which is the default chamfer length. You don't have to manipulate this

attribute in a script.

To specify a chamfer within your script, you must have a part open, then proceed as follows:

1. Create a Chamfer by using the isa function

Chamfer1 isa Chamfer () { }

2. Right-click anywhere inside the parentheses and select the 'Get Edge' or the 'Get Surface' command

from the contextual menu. Then, in the geometry area, select the edge or surface to be chamfered.

MyBox isa CATPart
 {
 BoxPart isa Part
 {
 PartBody isa BodyFeature
 {
 // Create a box
 Box1 isa Box
 {
 Width = 20.0 mm ;
 Height = 25.0 mm ;
 Length = 15.0 mm ;
 }
 // Create a chamfer
 // The edge definition must be captured
 // from the geometry area
 // Use the Get Edge command from the
 // contextual menu
 Chamfer1 isa Chamfer (Edge Definition)
 {
 Angle = 20 deg;
 Length1 = 5 mm ;
 }
 Chamfer2 isa Chamfer (Edge Definition)
 {
 Angle = 30 deg;
 Length1 = 10 mm ;
 }
 }
 }
 }

Cone

Definition:

A cone is a shaft created by rotating a triangular sketch.

Attributes:

A cone is defined by the following attributes:

● Length. The syntax to be used is Length = 15.0 mm ;.

● Radius. The syntax to be used is Radius = 20.0 mm ;.

MyCone isa CATPart
 {
 ConePart isa Part
 {
 PartBody isa BodyFeature
 {
 // Create a cone
 Cone1 isa Cone
 {
 Radius = 20.0 mm ;
 Length = 15.0 mm ;
 }
 }
 }
 }

Counterbored Hole
Definition:

A mechanical feature of Hole type you

create when you click the icon in
the Part Design workbench. For more
information, refer to the Part Design
User's Guide.

Attributes:

 A counterbored hole is defined by the following attributes:
● CounterboreDepth. The syntax to be used is CounterboreDepth =12mm.

● CounterboreDiameter: The syntax to be used is CounterboreDiameter =15mm.

Counterdrilled Hole
Definition:

A mechanical feature of Hole type you

create when you click the icon in
the Part Design workbench. For more
information, refer to the Part Design
User's Guide.

Attributes:

 A counterdrilled hole is defined by the following attributes:
● CounterdrillAngle. The syntax to be used is CounterdrillAngle = 22deg.

● CounterdrillDiameter. The syntax to be used is CounterdrillDiameter =12mm.

● CounterdrillDepth. The syntax to be used is CounterdrillDepth =12mm.

Countersunk Hole
Definition:

A mechanical feature of Hole type you

create when you click the icon in
the Part Design workbench. For more
information, refer to the Part Design
User's Guide.

Attributes:

 A countersunk hole is defined by the following attributes:
● CountersinkAngle. The syntax to be used is CountersinkAngle = 12deg.

● CountersinkDepth. The syntax to be used is CountersinkDepth =15mm.

● CountersinkDiameter. The syntax to be used is CountersinkDiameter =15mm.

Cylinder
Definition:

A cylinder is a pad created by extruding a circular sketch.

Attributes:

 A cynlinder is defined by the following attributes:
● EndLimit\Length. The syntax to be used is Length =12mm.

● Radius: The syntax to be used is Radius =5mm.

Cylinder1 isa CATPart
 {
 Part isa Part
 {
 PartBody isa BodyFeature
 {
 // Create a cylinder
 Cyl1 isa Cylinder
 {
 Radius=15.0 mm;
 EndLimit=20.0 mm;
 }
 }
 }
 }

Hole
Definition:

A is an opening through a feature.

Attributes:

 A hole is defined by the following attributes:
● BottomAngle

● BottomType

● Depth

● Diameter

● DiameterThread

● HoleType

● LimitType

● Pitch

● TapSide

● Threaded

● ThreadingDepth

● Radius

To specify a hole within your script, you have to use one of the holes listed below. Hole is the father type and
cannot be used.

● Counterbored Hole

● Countersunk Hole

● Counterdrilled Hole

● Tapered Hole

Pad
Definition:

A pad is a feature created by extruding a
sketch.

Attributes:

 A pad is defined by the following attributes:
● the sketch the pad is extruded from.

● the FirstLimit\Length (or StartLimit\Length)

● the SecondLimit\Length (or EndLimit\Length).

A limit which is not specified is set by default to zero.

// Use the Insert File Path command from the
// contextual menu to specify the path of the file
// to be imported

import PktSketchToImport.CATPart;/*In the script
above, the P0 pad is created from the Sketch.1 sketch
which is imported from the document.*/

myDocument isa CATPart
 {
 myPart isa Part
 {
 PartBody isa BodyFeature
 {
 Sketch isa Sketch.1
 {}
 P0 isa Pad("Sketch")
 {
 SecondLimit\Length=40.0mm;
 }
 }
 }
 }

Shaft
A shaft is a feature created by rotating a
sketch around and axis.

Attributes:

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktSketchToImport.CATPart

 A shaft has two attributes:
● The StartAngle. The syntax to be used is StartAngle=12deg.

● The EndAngle. The syntax to be used is EndAngle=23deg.

● The MergeEnd

● The NeutralFiber

● The Thickness1

● The Thickness2

● The Thinmode

The sketch to be rotated must be imported from an external CATPart document. This external document must
also include a rotation axis.

/* Use the Insert File Path command from the
contextual menu */
/* to specify the sketch to be imported */
import sketch to be imported. The file must contain
Sketch.1 */
import //Use the Insert File Path command to insert the
Pktsketch_shaft.CATPart file.
MyShaft isa CATPart
 {
 myPart isa Part
 {
 PartBody isa BodyFeature
 {
 Sketch isa Sketch.1 {}
 S0 isa Shaft("Sketch")
 {
 StartAngle = 20 deg ;
 EndAngle = 300 deg ;
 }
 }
 }
 }

Shell

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/Pktsketch_shaft.CATPart

Definition:

A shell is a hollowed out feature.

Attributes:

 A shell is defined by the following attributes:
● DefaultInsideThickness. The syntax to be used is DefaultInsideThickness = 2mm.

● DefaultOutsideThickness: The syntax to be used is DefaultOutsideThickness = 1mm.

To specify a shell within your script, you must have a part open, then:

1. create a Shell by using the isa function

Shell1 isa Shell () { }

2. right-click anywhere inside the parentheses and select the 'Get Surface' function from the contextual

menu. Then, in the geometry area, select the face to be hollowed out.

 A 1mm thick shell is created by default.

MyBox isa CATPart
 {
 BoxPart isa Part
 {
 PartBody isa BodyFeature
 {
 Box1 isa Box
 {
 Width = 20.0 mm;
 Height = 25.0 mm;
 Length = 15.0 mm;
 }
 Shell1 isa Shell (face definition)
 {
 DefaultInsideThickness = 2mm;
 DefaultOutsideThickness = 1mm;
 }
 }
 }
}

SimpleHole
Definition:

A mechanical feature of Hole type you create when you click the icon in the Part Design workbench. For
more information, refer to the Part Design User's Guide..

Attributes:

Hole1 isa CATPart
{
 Part isa Part
 {
 PartBody isa BodyFeature
 {
 P isa Pad
 {
 }
F isa SimpleHole("Use the Get Edge command to
select the edge")
 {
 }
 }
 }
}

Sphere
Definition:

A sphere is a shaft created by rotating half a circle around an axis passing through the arc extremities. The
only property is the Radius.

Attributes:

 A sphere is defined by the following attribute:
● Radius. The syntax to be used is: Radius = 20.0 mm.

MySphere isa CATPart
 {
 SpherePart isa Part
 {
 PartBody isa BodyFeature
 {
 Sphere1 isa Sphere
 {
 Radius = 20.0 mm ;
 }
 }
 }
}

Tapered Hole
Definition:

A mechanical feature of Hole type you create

when you click the icon in the Part
Design workbench. For more information,
refer to the Part Design User's Guide.

Attributes

 A tapered hole is defined by the following attribute:
● TaperAngle:

Thickness

Definition:

A thick

Attributes

 A thickness is defined by the following attribute:
● DefaultThickness:

ThickSurface
Definition:

A thicksurface is a surface to which
material was added in two opposite
directions.

Attributes:

 A thicksurface is defined by the following attributes:
● TopOffset, the thickness in one direction. The syntax to be used is TopOffset = 0.5mm.

● the BotOffset, the thickness in the one direction. The syntax to be used is BotOffset = 10
mm.

myThickSurface isa CATPart
 {
 myPart isa Part
 {
 OpenBody1 isa OpenBodyFeature
 {
 P1 isa GSMPoint
 {
 PointType = 0;
 TypeObject isa
GSMPointCoord
 {
 X = 0mm;
 Y = 0mm;
 Z = 0mm;
 }
 }
 C isa GSMCircle
 {
 CircleType = 0;
 TypeObject isa
GSMCircleCtrRad
 {
 Center = object :
..\..\P1;
 Support = object :
..\..\..\`xy-plane`;
 Radius = 150mm;
 }
 StartAngle = 0deg;
 EndAngle = 360deg;
 }
 Fi isa GSMFill
 {
 Boundary = object :
..\C;
 }
 }

 PartBody isa BodyFeature
 {
 Thick1 isa ThickSurface
 {
 TopOffset = 0.5mm;
 BotOffset = 10 mm;
 Surface = object :
..\..\OpenBody1\Fi;
 }
}
 }
}

Torus

Definition:

A torus is a shaft created by rotating a circular sketch around an axis.

Attributes:

 A torus is defined by the following attributes:
● InnerRadius

● SectionRadius

BodyDoc isa CATPart
 {
 BodyPart isa Part
 {
 Body isa BodyFeature
 {
 // Create a sphere
 Sphere1 isa Sphere
 {
 Radius = 15.0 mm;
 }
 // Create a torus
 Torus1 isa Torus
 {
 InnerRadius = 20.0 mm ;
 SectionRadius = 10.0 mm ;
 }
 }
 }
}

 Part shared Package

ConstantEdgeFillet
Fillet

Pattern

Fillet

Definition

Describes the feature you create when you click the icon in the Part Design workbench. For more
information, please refer to the Part Design User's Guide. It is defined by one property:

● Radius

 There are 3 different types of fillets:

● ConstantEdgeFillet

● FaceFillet

● TriTangentFillet

ConstantEdgeFillet

Definition

A fillet is a curved surface of a constant or variable radius that is tangent to, and that joins two surfaces.
Together, these three surfaces form either an inside corner or an outside corner.

Important Note:

To specify a fillet within your script, you must have a part open, then:

1. Create a Fillet by using the isa keyword.

Fillet1 isa ConstantEdgeFillet () { }

2. Right-click anywhere inside the parentheses and select the 'Get Edge' or the 'Get Surface' function from

the contextual menu. Then, in the geometry area, select the edge or the face to be filleted.

Example
Box1 isa CATPart
 {
 BoxPart isa Part
 {
 PartBody isa BodyFeature
 {
 Box1 isa Box
 {
 Width = 20.0 mm ;
 Height = 25.0 mm ;
 Length = 15.0 mm ;
 }
 // Use the Get Edge or Get Surface
command
 // from the contextual menu to retrieve
 // the edge or face to be filleted
 Fillet1 isa ConstantEdgeFillet (face to
be filleted)
 {
 Radius =1.0 mm;
 }
 }
 }
 }

Pattern

Definition

A pattern is a set of similar features repeated in the same part. Two types of patterns can be created with
CATIA: the rectangular patterns and the circular patterns. At present, only rectangular patterns can be
generated from a script. A rectangular pattern is defined by the following properties:

● Nb1, the number of elements to be replicated along the first direction

● Nb2, the number of elements to be replicated along the second direction

● Step1, the element spacing along the first direction

● Step2, the element spacing along the second direction

● Activity.

Syntax

pattern1 isa pattern [Nb1,Nb2] of feature_to_be_repeated

Example
MyBox isa CATPart
{
BoxPart isa Part
{
PartBody isa BodyFeature
{
Box1 isa Box
{
Width = 20 mm ;
Height = 20 mm ;
Length = 20 mm ;
}

// Use the Get Surface command from the
// contextual menu to specify the hole
// anchor
Hole1 isa SimpleHole ("Face:(Brp:(Pad.1;2);None:();Cf9:())")
{
Diameter = 15 mm;
}
Pattern1 isa Pattern[3,4] of Hole1
{
Step1 = 50 mm;
Step2 = 50 mm;
}
}
}

Standard Package

Old Types Names Old Attributes New Types Names New Attributes

-

-

Feature Id
Name
Owner

- - List -

-

-

Visualizable Color
Layer
Pick
Show

 GSD Shared Package

Types Names Attributes

GSMAffinity AxisFirstDirection
AxisOrigin
AxisPlane
Ratio

GSMAxisToAxis

GSMRotate Angle
Axis

GSMScaling Ratio
Reference

GSMSymetry Reference

GSMTransformation Activity
ToTransfor

GSMTranslate Direction
Distance

GSD Package
Please find below a table listing the types contained in the GSD package:

GSM3DCurveOffset GSMAssemble GSMAxisToAxis

GSMBlend GSMBoundary GSMCombine

GSMConic GSMConnect GSMCorner

GSMCurve GSMCurvePar GSMCurveSmooth

GSMCylinder GSMDirection GSMExtract

GSMExtractContour GSMExtrapol GSMExtremum

GSMExtremumPolar GSMExtrude GSMFill

GSMFillet GSMFilletBiTangent GSMHealing

GSMHelix GSMIntersect GSMInverse

GSMLawDistProj GSMLineCorner GSMLoft

GSMNear GSMOffset GSMProject

GSMReflectLine GSMRevol GSMSphere

GSMSpine GSMSpiral GSMSplit

GSMSweep GSMSweepCircle GSMSweepConic

GSMSweepSegment GSMSweepSketch GSMTrim

GSMUnfold GSMWSupport GSOBump

GSOJunction GSOSeatDiabolo GSPShapeMorphing

GSOVariableOffset GSOWrapCurve GSOWrapSurface

GSMAssemble
Definition:

A GSMAssemble is an object which joins
at least two surfaces or two curves.
The surfaces or curves to be joined must
be adjacent. See the Generative Shape
Design User's Guide for more
information.

Attributes:

Click here to open the GSMAssembleScript script file.

GSMCurve
Definition:

A GSMCurve is an object generated by
the Generative Shape Design product.

You can create a corner by clicking the

Corner icon () in the Generative
Shape Design workbench.

Click here to open the GSMCurveScript script file.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktGSMAssembleScript.CATGScript
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktGSMCurveScript.CATGScript

GSMCurvePar
Definition:

An GSMCurvePar object is a Generative
Shape Design parallel curve.

Attributes:

A GSMCurvePar is defined by the following attributes:

● InvertLaw.

● Length1.

● Length2.

● Mode.

● Offset.

● Orientation.

● PassingPoint.

● Support.

● TMDeviation.

● Type.

Click here to open the
GSMCurveParScript script file.

GSMExtrude

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktGSMCurveParScript.CATGScript

Definition:

A surface created by extruding a profile
along a given direction.

You can create an extruded surface by

clicking the Extrude icon () in the
Generative Shape Design workbench.

Attributes:

A GSMExtrude is defined by the following attributes:

● Direction.

● Element1.

● Length1.

● Length2.

● Orientation.

Click here to open the GSMSplit script
file.

GSMFillet

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktGSMSplitScript.CATGScript

Definition:

An GSMFillet object is curved surface
of a constant or variable radius that
is tangent to and joins two surfaces.
Together these three surfaces form
either an inner or outer corner.

Attributes:

A GSMFillet is defined by the following attributes:

● Element1.

● Element2.

● Radius.

Click here to open the
GSMFilletScript.CATGScript file.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktGSMFilletScript.CATGScript

GSMProject
Definition:

A Generative Shape Design projection.
See the Generative Shape Design User's
Guide for more information.

Attributes:

A GSMProject is defined by the following attributes:

● Direction.

● Normal which corresponds to the Projection type field in the Projection Definition dialog box (Normal = 1
for an orthogonal projection - otherwise specify a direction, a GSMLine for example).

● SolutionType.

● TMDeviation.

● ToProject which corresponds to the Projected field in the Projection Definition dialog box.

● Support which corresponds to the Support field in the Projection Definition dialog box.

Click here to open the GSMSplit script
file.

GSMSplit

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktGSMSplitScript.CATGScript

Definition:

A surface or wireframe element that was
split by means of a cutting element. You
can split:

● a wireframe element by a point,
another wireframe element or a
surface

● a surface by a wireframe element or
another surface.

You can split geometry by clicking the

Split icon () in the Generative Shape
Design workbench.

Click here to open the GSMSplit script
file.

GSMSweepSegment
Definition:

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktGSMSplitScript.CATGScript

Attributes:

A GSMSweepSegment is defined by the following attributes:

● Angle.

● GuideCrv.

● GuideSurf.

● Length.

● Length1.

● Length2.

● Spine.

Click here to open the
GMSweepSegmentScript file.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktGSMSweepSegmentScript.CATGScript

 Knowledge Expert
Please find below a table listing the types contained in the Knowledge Expert package:

KWECheck KWEGenericRuleBaseComponent KWERule

KWERuleBase KWERuleSet KWERuleBaseComponent

KWECheck
Definition:

Expert Checks are features generated by
the Knowledge Expert product. Checks
are regrouped into rule sets. Rule sets
belong to a rule base. When writing a
script with checks you must comply with
the Rule Base/Rule Set hierarchy. Refer
to the Knowledge Expert User's Guide for
more information on the concepts behind
the expert rules and checks.

Click here to open the
KnowledgeExpertScript file.

KWERule

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktKnowledgeExpertScript.CATGScript

Definition:

Expert Rules are features generated by
the Knowledge Expert product. Rules are
regrouped into rule sets. Rule sets
belong to a rule base. When writing a
script with rules you must comply with
the Rule Base/Rule Set hierarchy. Refer
to the Knowledge Expert User's Guide for
more information on the concepts behind
the expert rules and checks.

Click here to open the
KnowledgeExpertScript file.

KWERuleBase
Definition:

Rule bases are features generated by the
Knowledge Expert product. Refer to the
Knowledge Expert User's Guide for more
information on the concepts behind this
type of feature.

Click here to open the
KnowledgeExpertScript file.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktKnowledgeExpertScript.CATGScript
file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktKnowledgeExpertScript.CATGScript

KWERuleSet
Definition:

Rule sets are features generated by the
Knowledge Expert product. Refer to the
Knowledge Expert User's Guide for more
information on the concepts behind this
type of feature.

Click here to open the
KnowledgeExpertScript file.

file:///E|/www/meidocr14/Doc/online/cfysm_C2/samples/ProductKnowledgeTemplate/PktKnowledgeExpertScript.CATGScript

 Mechanical Modeler
Some types and attributes were changed. Please find below a conversion table listing the old types, their
attributes, their new names (if any) as well as their attributes:

BodyFeature GeometryFeature

MechanicalFeature OpenBodyFeature

OpenBodyFeature

BodyFeature
Definition:

A body is the combination of several
features within a part. For more
information, see the Part Design User's
Guide.

BodyDoc isa CATPart
 {
 BodyPart isa Part
 {
 Body isa BodyFeature
 {
 // Create a sphere
 Sphere1 isa Sphere
 {
 Radius = 15.0 mm;
 }
 // Create a torus
 Torus1 isa Torus
 {
 InnerRadius = 20.0 mm ;
 SectionRadius = 10.0 mm ;
 }
 }
 }
 }

Product Knowledge Template Interoperability

In this section, you will find information about the interoperability between CATIA Product

Knowledge Template and other applications listed below:

ENOVIA VPM V5 Interoperability
ENOVIAVPM Interoperability

ENOVIA VPM V5 Interoperability
Optimal CATIA PLM Usability for Product Knowledge Template

Working with Assembly Templates in ENOVIA VPM V5
Saving and Using Assembly Templates in ENOVIA VPM V5

Working with Assembly Templates in ENOVIA LCA Using VPM Navigator
Instantiating a Part Template From ENOVIA VPM V5 Using the Document Chooser

Optimal CATIA PLM Usability for Product
Knowledge Template

When working with ENOVIA VPM V5, the safe save mode ensures that you only create data in CATIA
that can be correctly saved in ENOVIA VPM V5.

ENOVIA VPM V5 offers two different storage modes: Workpackage (Document kept - Publications
Exposed) and Explode (Document not kept). Product Knowledge Template (PKT) has been configured
to work in the Workpackage mode.

Product Knowledge Template Commands in ENOVIA VPM V5

Please find below the list of the Product Knowledge Template commands along with their
accessibility status in ENOVIA VPM V5.

Commands Accessibility in
ENOVIA VPM V5

Comments

Create a Generative Script Available None

Create a PowerCopy Available None

Create a UserFeature Available None

Create a Document Template
See Working with Assembly
Templates in ENOVIA. None

Save in catalog Available None

Instantiate From Selection Available None

Instantiate From Document Available None

Open Catalog Available None

To ensure seamless integration, you must have both a CATIA and ENOVIA session running.

Working with Assembly Templates in ENOVIA VPM
V5

Note that the methodology described in this topic also applies to ENOVIAVPM.

Saving an Assembly Template in ENOVIA VPM V5

To save an assembly template in ENOVIA VPM V5, the user first creates the assembly and saves it in ENOVIA
VPM V5. Then, he creates the document template and saves the product in ENOVIA VPM V5 (1). He creates a
CATIA catalog document referencing this assembly template (2), and saves the catalog as a new document
(Document kept mode) in ENOVIA VPM V5 (3). The catalog becomes available in the Search window in ENOVIA
VPM V5 (4). He sends the catalog from ENOVIA VPM V5 to CATIA (5) and instantiates the assembly template in
CATIA (6).

Methodology

Defining the assembly template

● The assembly template must be stored in a product saved using the document kept storage mode (work
package).

● The assembly template may contain internal relational design links: The context of those links must be the
assembly root (or one of its sub-CATProducts) except in the case of a skeleton that can be contextual outside
the context.

● Links to external documents stored in ENOVIA VPM V5 can be created if they are loaded in session.

● The recommended methodology consists in:

❍ Creating a skeleton containing isolated geometry (not
contextual). This skeleton is designed in context.

❍ Designing the rest of the model in context of the document
template.

Part1 and Part2 can be contextual to the skeleton via the
Document Template product.

The skeleton can be contextual. In this case, the inputs
will be automatically valuated at instantiation. If not, the
user will have to select them.

Note that if the document template was designed in
context, the documents located above this template in
the specification tree will be required at instantiation.

Referencing the assembly template in a catalog

● The catalog must be stored using the Document kept storage mode.

Instantiating the assembly template

● The assembly template can be instantiated into a product saved using the Document Kept storage mode
(scenario 2) but also in a product explode (Document not kept) (see scenario 1).

● When instantiating in an explode context, the option Keep link with selected object should not be selected:
Relational design links cannot be saved in the exploded product. An error message will be raised if the user
tries to instantiate a document template with this option activated. The assembly instantiated is stored as a
work package.

● The result of an instantiation cannot be saved in Structure Exposed storage mode.

● If the destination product was saved in Structure Exposed storage mode, or if it is located below a product
saved in Structure Exposed storage mode, the instantiation will not be possible if the template contains
contextual parts whose context is outside the template but whose external references point items located in
the template.

● Managing reference-to-reference link/Automatic input: if one of the link relies on a reference-to-reference
basis, a reference-to-reference link is created at instantiation if the Keep link with selected object option is
checked.

● When the destination assembly contains at least one Product in Explode mode, the context is the first work
package found. If the instantiation occurs at the work package level, the context will be the work package and
the user will only be able to select the items located below this work package (if the Keep link with selected

object option is checked).

● When the Use root context in assembly option is checked, the behavior is the default document template
behavior.

Supported Scenarios

Destination Product: Document not kept mode

In the graphic below, the assembly template has one input and the assembly contains contextual links. If the
document contains contextual links, the context must be the root assembly. The instantiation can occur in a
product saved in Publications Exposed storage mode. It is not possible to instantiate an assembly template into a
product saved in Structure Exposed storage mode if this instantiation is going to create contextual links, that is to
say if the Keep link with selected object check box option is checked in the Tools->Options menu and if the
template has inputs.

Destination Product: Document kept Scenario

In the graphic below, the assembly template has one input and the assembly contains contextual links. The Keep
link with selected object option is supported.

Saving and Using Assembly Templates in ENOVIA VPM V5

This task is designed to show the user how to save assembly templates in ENOVIA VPM V5 and how to re-use them in
CATIA . In the scenario described below, the user instantiates ribs into a plane wing using the document template
feature.

The scenario is divided into the following steps:
● The user opens the Wing_Transfo.CATProduct file. This file

already contains 4 instantiated clamping pins (see picture
opposite). He saves it in ENOVIA VPM V5.

● The user creates the document template in the
Rib_Fastened.CATProduct file and saves the file in ENOVIA
VPM V5. Then he creates a catalog (Rib_Template.catalog)
referencing the document template and saves the catalog in
ENOVIA VPM V5.

● The user saves the Left_Wing.CATProduct file in ENOVIA VPM
V5 and reloads it in CATIA. Then he loads the
Rib_Template.catalog in CATIA and instantiates the
document template into the wing.

Before you start, make sure you have checked the Keep link with selected object option in the Part
Infrastructure->General tab.

Saving the Wing_Transfo.CATProduct file in ENOVIA VPM V5

1. In CATIA, open the Wing_Transfo.CATProduct file. The following image displays:

file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Wing_Transfo.CATProduct

2. Save your files in ENOVIA VPM V5. To do so, proceed as follows:

❍ In CATIA, click the Connect to ENOVIA LCA icon () to connect your ENOVIA VPM V5
database.

❍ Click the Set PDM Properties icon ().

■ In the Set PDM Properties window, select
Enovia5 in the Destination PDM scrolling list.

■ Select the Publications Exposed storage
mode. Click OK when done.

❍ In CATIA, click the Save data in ENOVIA LCA Server... icon (). The Save in ENOVIA V5
dialog box displays.

❍ Check the Immediate Commit check box (if need be) and click OK. Your data are saved in the
ENOVIA VPM V5 database. Close the file in CATIA.

3. In ENOVIA VPM V5, click the ENOVIA Home icon ().

Expand the Content Management node, right-click the

Documents folder and select the Activate command.

4. The Content Management Startup Selection dialog box displays. Click the Search Documents radio button and

click OK to launch the search.

5. In the opening Search window,

❍ select Document Revision in the Search for: scrolling list.

❍ select the Creator field, enter the Creator's name and click Search.

6. The Wing_Transfo.CATProduct file displays. Right-click it and select the Send To->CATIA V5 command. The

file opens in CATIA. Close your file.

Creating the document template in the Rib_Fastened.CATProduct file

7. Open the Rib_Fastened.CATProduct file.

8. From the Start->Knowledgeware menu, access the Product Knowledge Template workbench.

9. Click the Create a Document Template icon (). The Document Template Definition window

displays.

10. In the Document Template Definition window, click the Inputs tab to select the inputs. In the geometry,

expand the External References node located below the Rib node. Select all external references and assign

them a role (see table below.)

file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Rib_Fastened.CATProduct

Name Role

Line.1 Web

Rear Rear

Front Front

Upper Offset Upper_New

Lower Offset Lower_New

11. Click the Published Parameters tab to publish parameters. To do so, proceed as follows:

❍ Click the

button. The Select

parameters to insert

window displays.

❍ Use the arrow key to select the following parameters:

■ Geometrical Set.1\Offset.3\Offset

■ Geometrical Set.4\Parallel.1\Offset1

■ Geometrical Set.5\Parallel.3\Offset1

❍ Click OK twice. The Document template is added to the KnowledgeTemplates node.

12. Click the Save data in ENOVIA LCA Server... icon () to save your document in ENOVIA VPM V5. Do not

close your file in CATIA.

Creating and saving the catalog containing the document template

13. From the Start->Infrastructure menu, access the Catalog Editor workbench.

14. Click the Add Family icon (). In the Component Family Definition dialog box, enter Rib and click OK when

done.

15. Double-click the Rib family and click the Add Component icon (). Click the Select external feature

button and select the document template in the Rib_Fastened.CATProduct file.

16. Click the Set PDM Properties icon (). In the Set PDM Properties window, select Enovia5 in the

Destination PDM scrolling list, and select the Publications Exposed storage mode. Click OK when done.

file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/images/enoviaasstemplate3NLS.gif

17. Click the Save data in ENOVIA LCA Server... icon (). The Save in ENOVIA V5 dialog box displays.

18. Check the Immediate Commit check box (if need be) and click OK. Your catalog is saved in the ENOVIA VPM

V5 database. Close the files in CATIA.

Saving the Left_Wing.CATProduct file in ENOVIA VPM V5

19. In CATIA, open the Left_wing.CATProduct file.

20. Save your files in ENOVIA VPM V5. To do so, proceed as follows:

❍ Click the Set PDM Properties icon (). In the Set PDM Properties window, select
Enovia5 in the Destination PDM scrolling list, and select the Publications Exposed storage
mode. Click OK when done.

❍ In CATIA, click the Save data in ENOVIA LCA Server... icon (). The Save in ENOVIA
V5 dialog box displays. Check the Immediate Commit check box (if need be) and click OK.

❍ Your data are saved in the ENOVIA VPM V5 database.

Instantiating the document template into the Left_Wing.CATProduct file

21. In ENOVIA VPM V5, right-click the saved product and select the Send To->CATIA V5 command. The

document opens in CATIA.

22. In ENOVIA VPM V5, click the ENOVIA Home icon ().

Expand the Content Management node, right-click the

Documents folder, and select the Activate command.

23. The Content Management Startup Selection dialog box

displays. Click the Search Documents radio button and click

OK to launch the search.

24. In the Search window,

❍ select Document Revision in the Search for:
scrolling list.

❍ select the Creator field, enter the creator's name and
click Search.

25. In the list, right-click the Rib_Template.catalog file, and select the Send To->CATIA V5 Catalog Browser

command.

file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Left_wing.CATProduct

26. The catalog browser displays in CATIA. Double-click Rib, and DocumentTemplate.1.

27. Expand the Left_Wing/Left_Ref Publications node in the specification tree, and instantiate the rib template

contained in the catalog using the wing published features. Repeat this step 4 times.

28. In CATIA, click the Save data in ENOVIA LCA Server... icon (). Your data are saved in ENOVIA VPM V5.

Working with Assembly Templates in ENOVIA
VPM V5 Using VPM Navigator

To define assembly templates, external documents can be selected whether in session or by making a query in VPM
Navigator.

To instantiate an assembly template, you must have created a catalog and stored it in ENOVIA. Then, perform a query and
send the catalog to the catalog browser.

To know more about the VPM Navigator, see the VPM Navigator User's Guide.

Instantiating a Part Template From ENOVIA VPM V5
Using the Document Chooser

This task explains how to instantiate a part template stored in ENOVIA VPM V5 via the Document Chooser.

● Make sure you have selected ENOVIAV5 in the View -> Toolbars menu.

● To carry out this scenario, make sure you have enabled ENOVIA in the Document Environments field (Tools-
>Options->General->Document.)

It is now possible to associate non CATIA (ENOVIA VPM V5, ...) documents to a template. To do so, make sure
you have enabled the desired environment in the Document Environments field (Tools->Options->General-
>Document.) Your documents will be accessed via the Documents Chooser.

To carry out this scenario, you will need the following documents:

● BottomCase.CATPart

● Battery.CATPart

● Electronic.CATProduct

● PlanarCard.CATProduct

● InteractiveBoard.CATPart

● ChipAC110.CATPart

● Chip_AC20.CATPart

● Chip_AC30.CATPart

● Capacitor_500.CATPart

● Capacitor_700.CATPart

● Speaker.CATPart

● Body.CATPart

● Lens.CATPart

● Indus.CATPart

● LCD30-28.CATPart

● FrontShell.CATPart

● Main_Shape.CATPart

1. Create a Product in ENOVIA called MobilePhone. Note that you can close ENOVIA VPM V5 after creating

the product.

Sending the product to CATIA

2. To send the MobilePhone product to CATIA, proceed as follows:

❍ In CATIA, click the Connect icon () in
the ENOVIA V5 toolbar. The Log On to
dialog box displays.

❍ In the Log On to ENOVIA V5 dialog box,
enter your User Name, your Password as
well as your Role, and click OK.

file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Bottomcase.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Battery.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Electronic.CATProduct
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/PlanarCard.CATProduct
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/InteractiveBoard.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Chip_AC110.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Chip_AC20.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Chip_AC30.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Capacitor_500.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Capacitor_700.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Speaker.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Body.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Lens.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Indus.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/LCD30-28.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/FrontShell.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Main_Shape.CATPart

❍ Click the Search ENOVIA icon (). The VPM Search dialog box displays.

❍ In the Objects scrolling list, select the Product option.

❍ If need be, enter the Owner's ID.

❍ Click OK when done. The Product ID displays in the Result window.

❍ Double-click the MobilePhone product in the Results list.

❍ Right-click the root product (MobilePhone) and select the Open... command. The Open
Modes dialog box displays. Click OK. The CATIA view displays.

Adding components to the product

3. Click the root product (MobilePhone) and select the Insert->Existing Component... command. Select

the following documents and click Open:

❍ BottomCase.CATPart

❍ Battery.CATPart

❍ Electronic.CATProduct

❍ Body.CATPart

❍ Lens.CATPart

❍ Indus.CATPart

❍ FrontShell.CATPart

4. Click the Save data in Enovia V5 icon (). The Save in ENOVIA dialog box displays. Click OK.

5. Open the Main_Shape.CATPart file. This Part contains a document template (Keypad 1).

6. Click the Save data in Enovia V5 icon (). The Save in ENOVIA dialog box displays. Click the

button.

7. Select the line referring to Main_Shape.CATPart and click Modify. Click the root product in the CATIA VPM

view and click OK. The file is saved in ENOVIA.

8. Close all windows in CATIA.

Instantiating the Part Template

9. Load the product from ENOVIA VPM V5. To do so, proceed as follows:

file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Bottomcase.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Battery.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Electronic.CATProduct
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Body.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Lens.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Indus.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/FrontShell.CATPart
file:///E|/www/meidocr14/Doc/online/xomugpkt_C2/samples/Main_Shape.CATPart

❍ Click the Search ENOVIA icon (). The VPM Search dialog box displays.

❍ In the Objects scrolling list, select the Product option.

❍ If need be, enter the Owner's ID.

❍ Click OK when done. The Product ID displays in the Result window.

❍ Double-click the MobilePhone product.

10. Right-click the Part instances, and select the Open... command. The Open Modes dialog box displays.

Check the Automatic lock of all opened Parts and Documents radio button and click OK. The

product displays. The mobile phone support displays.

11. From the Start->Knowledgeware menu, access the Product Knowledge Template workbench.

12. Click the Instantiate from Document icon.

13. Click the Enovia icon. The Search Conditions dialog box displays. Enter the name of the Revision owner

and click OK.

14. Select the Main_Shape.CATPart in the Search Result window and click Open.

15. Value the Inputs by selecting the publications located below the Industrial Design node in the

specification tree and click OK: The template is instantiated.

ENOVIAVPM Interoperability
Working with Assembly Templates in ENOVIAVPM

Working with Assembly Templates in
ENOVIAVPM

See Working with Assembly Templates in ENOVIA.

Workbench Description
This section contains the description of the icons and menus specific to the Product Knowledge Template
workbench.

The Product Knowledge Template workbench is shown below. Click the sensitive areas (toolbars) to access the
related documentation.

Product Knowledge Template Menu Bar
Generative Knowledge Toolbar

Templates Creation Toolbar
Templates Instantiation Toolbar

Product Knowledge Template Menu Bar
The menu specific to Product Knowledge Template is described below.

Start File Edit View Insert Tools Window Help

Insert

For See

Document Template
Creation...

Creating a Document Template

Generative Knowledge Toolbar
The Generative Knowledge toolbar contains the following tools:

See Creating a Script.

Templates Creation Toolbar
The Templates Creation toolbar contains the following tools

See Create a PowerCopy.

See Create a user feature.

See Create a document template.

Templates Instantiation Toolbar
The Templates Creation toolbar contains the following tools

See Instantiating PowerCopies, Instantiating User Features.

See Instantiating PowerCopies, Instantiating User Features.

See Instantiating PowerCopies, Instantiating User Features, and Instantiating a Part Template.

Customizing

Before you start your first working session, you can customize the way you work to suit your
habits.
This type of customization is stored in permanent setting files: these settings will not be lost if
you end your session

1. Select the Tools -> Options command. The Options dialog box displays.

The Options dialog box displays.

2. Choose the General category in the left-hand box.

3. Click the Parameters and measure tab. The following tabs display.

This tab lets you define:

❍ the Knowledge settings

❍ the libraries you want to load

❍ the report settings

4. Two other tabs, located in the Infrastructure category, in the Part Infrastructure

workbench, also interfere with Knowledgeware applications.

❍ General

❍ Display

5. Change these options according to your needs.

6. Click OK when done to validate your settings.

Knowledge
This page deals with these categories of options:

● Parameter Tree View

● Parameter names

● Relations update in part context

● Design Tables

Parameter Tree View

There are 2 types of items that you can display in the specification tree.

With value

Displays the parameter values in the specification tree.

 By default, this option is unchecked.

With formula

Displays the formulas constraining the parameter in the specification tree.

 By default, this option is unchecked.

Parameter names

This option should be checked if you work with non-Latin characters. If this option is unchecked, parameter
names should have to be renamed in Latin characters when used in formulas.

 By default, this option is unchecked.

Relations update in part context

Before V5R12, Knowledge relations (formulas, rules, checks, design tables, and sets of equations) used to
execute as soon as one of their inputs was modified.
The user can now choose, when creating the relation, if it will be synchronous (i.e. the evaluation will be
launched as soon as one of its parameters is modified) or asynchronous (i.e. the evaluation will be launched
when the Part is updated). Each relation can therefore be synchronous or asynchronous.

The 2 following options enable the user to create synchronous or asynchronous relations.

Creation of synchronous relations

Enables the user to create synchronous relations, that is to say relations that will be immediately updated if
one of their parameters/inputs is modified. Relations based on parameters are the only one that can be
synchronous.

 By default, this option is unchecked

Creation of relations evaluated during the global update

Enables the user to associate the evaluation of asynchronous relations with the global update. The relations
can be asynchronous for 2 reasons:

● The user wants the relations to be asynchronous

● The relation contains measures.

● Relations based on parameters: These relations can be synchronous or asynchronous.

● Relations based on geometry: These relations can only be asynchronous.

● Relations based on parameters and on geometry: For the part of the relations containing parameters, the
user decides if he wants the update to be synchronous or not. For the other part of the relations, the
update occurs when the global update is launched.

Note that the user can also decide if already existing relations are synchronous or
asynchronous. To know more, see Controlling Relations Update in the Infrastructure User's
Guide.

 By default, this option is checked.

Design Tables

There are 2 types of items that you can set up.

Automatic Synchronization at Load

When loading a model containing user design tables, if the design table files have been modified and the
external file data is contained in the model, the design table will be synchronized automatically if this radio
button is checked.

 By default, this option is checked.

Interactive Synchronization at Load

When loading a model containing user design tables whose external source file was deleted, this option
enables the user to select a new source file or to save the data contained in the design tables in a new file.

 By default, this option is unchecked.

Manual Synchronization

When loading a model containing user design tables, if the design table files have been modified and the
external file data is contained in the model, the design table will be synchronized if this radio button is
checked. To synchronize both files, right-click the design table in the specification tree and select the
DesignTable object->Synchronize command or the Edit->Links command.

 By default, this option is unchecked.

Default Mode: Copy Data Into Model

If checked, the data contained in the external source file will be copied into the model.

 By default, this option is unchecked.

Default Mode: Do Not Copy Data Into Model

If checked, the data contained in the external source file will not be copied into the model.

 By default, this option is checked.

Language
This page deals with the following categories of options:

● Language

● Reference Directory for Types

Language

This field is to be used when using measures in relations or user functions. Measures are specific functions to be

used in formulas and rules.

The Knowledge Advisor User's Guide provides you with tasks explaining how to use measures. For how to create

and use user functions, see the CATIA Application Architecture documentation.

Load extended language libraries

If checked, enables the user to select the packages he wants to load under Packages (if he wants to load a
limited number of packages.)

This option is particularly useful for the administrator to limit the number of packages used by
the user. It is also very useful to improve performances since only the required libraries are
loaded.

● When you open a document and some relations are broken, you might need to load all

libraries to solve the error, which may take quite a long time.

● It is strongly recommended to identify the packages you will need and to select them.

 By default, this option is unchecked.

All packages

Enables the user to select all packages.

Reference Directory For Types

Reference Directory For Types

Enables the user to save the CATGScript file in the Directory indicated in the Reference Directory for Types
field for later re-user (To know more, see the PKT User's Guide).

 By default, this option is not available.

Report Generation
This page explains how to customize the reports generated by the Global Check Analysis tool in the Knowledge
Advisor and Knowledge Expert workbenches. It deals with the following categories of options:

● Configuration of the Check Report

● Input XSL

● Report content

● Output directory

● HTML Options

Configuration of the Check Report

Html

Enables the user to generate a HTML report.

Xml

Enables the user to generate a XML report.

 By default, the HTML option is enabled.

Input XSL

Note that this option is available only if the XML configuration setting is set.

Input XSL

Enables the user to select the XSL style sheet that will be applied to the generated XML report. The
StyleSheet.xsl file is the default XSL file, but you can use your own template.

Report content

Failed Checks

If checked, the generated report will contain information about the failed checks only.

 By default, this option is unchecked.

All Checks

If checked, the generated report will contain information about all the checks contained in the document.

 By default, this option is checked.

Check Advisor

If checked, the generated report will contain information about all the Knowledge Advisor checks contained in
the document.

 By default, this option is checked.

Parameters information

Not available

Check Expert

If checked, the generated report will contain information about all the Knowledge Expert checks contained in
the document.

 By default, this option is checked.

Passed objects

If checked, the generated report will contain information about the objects that passed the Expert checks as
well as information about the parameters of these objects (diameter, depth, pitch,...).

 By default, this option is checked.

Objects information

Not available

Output directory

Output directory

Enables the user to select the output directory that will contain the generated report.

 By default, this option is available.

HTML Options

Open HTML browser into CATIA Session

This option is available for Windows only. It enables the user to define if the report will be opened in a CATIA
session (in this case, the check box should be checked) or if it will be opened in an Internet Explorer session
(in this case, the check box should remain unchecked.)

Note that it is highly recommended not to use this report as a basis for macros or for other applications. It is
only provided for information purposes.

 By default, this option is checked.

Part Infrastructure for Knowledgeware
Applications

This page deals with the options concerning:

● the external references: Keep link with selected object

● the specification tree display

Part Infrastructure General option

Keep link with selected object

You need to select this option to take advantage of the associativity.

Click here to know more about the Part Infrastructure General options.

Part Infrastructure Display option

Parameters

file:///E|/www/meidocr14/Doc/online/bascuprt_C2/bascuprt0200.htm#hj-external

Select this option to display the parameters when working in a CATProduct
context.

 By default, this option is unchecked.

Relations

Select this option to display the relations when working in a CATProduct
context.

 By default, this option is unchecked.

Click here to know more about the Part Infrastructure Display options.

file:///E|/www/meidocr14/Doc/online/bascuprt_C2/bascuprt0100.htm

Glossary

C

component A component is a feature that is used to form the User Feature (or the Power Copy). This
feature can be:
 A geometrical feature

● A knowledge object (Rules, Formulas, Design Table,Check)

● A constraint

● Another User Feature

● An Open Body

● A Body (not the Part Body)

contextual product A product containing contextual parts whose contexts are located outside the product.

I

input An input is a feature that is not directly selected by the user to make up the User Feature.
This feature points an external link through a component that is part of the UserFeature.
Inputs must be valuated at instantiation.

K

knowledgeware The set of software components dedicated to the creation and manipulation of knowledge-
based information. Knowledge-based information consists of rules and other types of
relations whereby designers can save their corporate know-how and reuse it later on to
drive their design processes.

P

powercopy A set of features (geometric elements, formulas, constraints and so forth) that are
grouped in order to be used in a different context, and presenting the ability to be
completely redefined when pasted.

R

role The external name given to each input and published parameter. This external name is
the "role". The default role of an input is the name of the feature and the default role of a
parameter is its default name. For example, in the case of a parameter, it is easier to
understand "The Radius of the Top Circle" rather than "Radius".
For the input, the role has another meaning: The role is useful to give more meaning to
the end user, but it can also be used to automatically look for inputs. To valuate the inputs
at each instantiation, you can specifically set a feature for each input, but you can also
use the "Use Identical Name" function. This means that the process tries to valuate an
input by looking for a feature whose name is identical to the role name of the input.

T

type A string whose recommended naming rule is the following: the first part is the company
prefix and the second part is related to the current user feature.

Index

A
arithmetic operators

assemble object

assigning a type to a user feature

Auto modify part numbers with suffix option

B
BodyFeature object

box object

C
chamfer object
command

Create a Generative Script

Create a Powercopy

create a user feature

Get Axis

Get Edge

Get Feature

Get Surface

Insert File Path

Instantiate From Document

Instantiate From Selection

Save in Catalog

comments

comments and URLs

cone object

constantedgefillet object

context keyword

contextual part

counterbored hole object

counterdrilled hole object

countersunk hole object

creating a NLS user feature

creating a part template

creating a powercopy

creating a script

creating a user feature

curve object

curve par object

cylinder object

D
datum

datums

declaring input data
design table

storing a design table in a powercopy

document chooser

document kept mode

document not kept mode

document template

adding external documents

assigning a role to an input

external document

methodology

part template

window
document template window

auto modify part numbers with suffix option

automatic input

edit list button

manual input

new document

same document

E
Edit List... button

ENOVIA LCA interoperability

enovia vpm v5

external document

extrude object

F
fillet object

from keyword

G
generating the result of a script

get axis command

get edge command

get feature command

get surface Command

graphical properties

H
hole object

I
import keyword

in keyword
input data

declaring

edges and points

features

file paths, feature names and parameter Values

input keyword
Insert

menu bar

insert file path command
instantiating a powercopy

from a catalog

from a document

from a selection
instantiating a user feature

from a catalog

from a document

from a selection

interoperability

isa keyword

iso-constrained

K
keyword

context

import

in

input

isa

let

publish

kwecheck object

kwerule object

kwerulebase object

kweruleset object

L
ladder

M
main result
menu bar

Insert

methodology

N
New Document

NLS user feature

O
object

constantedgefillet

pattern
object browser

attribute type icon

back icon

forward icon

inheritance icon

insert icon

object properties
option

keep link with selected object

use context in assembly

over-constrained

P
pad object

part design features
part template

creating

instantiating

pattern object

pocket calculator
powercopy

catalog editor

creating

managing

modifying a parameter value

publishing parameters

renaming inputs

saving in a catalog

storing a design table

useful tips

project object

publish Keyword

Q
question mark in formulas

R
reference

reference-to-reference link

referencing a user feature in a search operation

relative path

repeat

replace viewer

reusing input data

S
safe save

Same Document

saving a powercopy in a catalog

saving an assembly template in ENOVIA LCA

script skeleton

script structure

scripting language

Search

shaft object

shell object

simple hole

skeleton

specifying a context

sphere object

split object

starting from a script skeleton

storing a design table in a powercopy

sweep segment object

T
tapered hole object

thickness object

thicksurface object
Tools Options - Product Knowledge Template

Parameters and Measure tab

Part Infrastructure tab

torus object

U
use cases

the ladder

the pocket calculator

the tow hook

use identical name

use root context in assembly option
User Feature

storing in a catalog
user feature

assigning a type

creating

instantiating from a catalog

limitations

managing design tables

modifying a parameter value

modifying the main result

referencing in search operation

renaming a parameter

useful tips

using the object browser

V
variables

	Numbx:
	R:

	PageText:
	R:

	ProductName:
	L:

	Version:
	P1:
	Numbers:
	Numbx:
	R: 1

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P2:
	Numbers:
	Numbx:
	R: 2

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P3:
	Numbers:
	Numbx:
	R: 3

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P4:
	Numbers:
	Numbx:
	R: 4

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P5:
	Numbers:
	Numbx:
	R: 5

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P6:
	Numbers:
	Numbx:
	R: 6

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P7:
	Numbers:
	Numbx:
	R: 7

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P8:
	Numbers:
	Numbx:
	R: 8

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P9:
	Numbers:
	Numbx:
	R: 9

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P10:
	Numbers:
	Numbx:
	R: 10

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P11:
	Numbers:
	Numbx:
	R: 11

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P12:
	Numbers:
	Numbx:
	R: 12

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P13:
	Numbers:
	Numbx:
	R: 13

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P14:
	Numbers:
	Numbx:
	R: 14

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P15:
	Numbers:
	Numbx:
	R: 15

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P16:
	Numbers:
	Numbx:
	R: 16

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P17:
	Numbers:
	Numbx:
	R: 17

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P18:
	Numbers:
	Numbx:
	R: 18

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P19:
	Numbers:
	Numbx:
	R: 19

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P20:
	Numbers:
	Numbx:
	R: 20

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P21:
	Numbers:
	Numbx:
	R: 21

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P22:
	Numbers:
	Numbx:
	R: 22

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P23:
	Numbers:
	Numbx:
	R: 23

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P24:
	Numbers:
	Numbx:
	R: 24

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P25:
	Numbers:
	Numbx:
	R: 25

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P26:
	Numbers:
	Numbx:
	R: 26

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P27:
	Numbers:
	Numbx:
	R: 27

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P28:
	Numbers:
	Numbx:
	R: 28

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P29:
	Numbers:
	Numbx:
	R: 29

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P30:
	Numbers:
	Numbx:
	R: 30

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P31:
	Numbers:
	Numbx:
	R: 31

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P32:
	Numbers:
	Numbx:
	R: 32

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P33:
	Numbers:
	Numbx:
	R: 33

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P34:
	Numbers:
	Numbx:
	R: 34

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P35:
	Numbers:
	Numbx:
	R: 35

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P36:
	Numbers:
	Numbx:
	R: 36

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P37:
	Numbers:
	Numbx:
	R: 37

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P38:
	Numbers:
	Numbx:
	R: 38

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P39:
	Numbers:
	Numbx:
	R: 39

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P40:
	Numbers:
	Numbx:
	R: 40

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P41:
	Numbers:
	Numbx:
	R: 41

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P42:
	Numbers:
	Numbx:
	R: 42

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P43:
	Numbers:
	Numbx:
	R: 43

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P44:
	Numbers:
	Numbx:
	R: 44

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P45:
	Numbers:
	Numbx:
	R: 45

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P46:
	Numbers:
	Numbx:
	R: 46

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P47:
	Numbers:
	Numbx:
	R: 47

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P48:
	Numbers:
	Numbx:
	R: 48

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P49:
	Numbers:
	Numbx:
	R: 49

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P50:
	Numbers:
	Numbx:
	R: 50

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P51:
	Numbers:
	Numbx:
	R: 51

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P52:
	Numbers:
	Numbx:
	R: 52

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P53:
	Numbers:
	Numbx:
	R: 53

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P54:
	Numbers:
	Numbx:
	R: 54

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P55:
	Numbers:
	Numbx:
	R: 55

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P56:
	Numbers:
	Numbx:
	R: 56

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P57:
	Numbers:
	Numbx:
	R: 57

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P58:
	Numbers:
	Numbx:
	R: 58

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P59:
	Numbers:
	Numbx:
	R: 59

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P60:
	Numbers:
	Numbx:
	R: 60

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P61:
	Numbers:
	Numbx:
	R: 61

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P62:
	Numbers:
	Numbx:
	R: 62

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P63:
	Numbers:
	Numbx:
	R: 63

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P64:
	Numbers:
	Numbx:
	R: 64

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P65:
	Numbers:
	Numbx:
	R: 65

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P66:
	Numbers:
	Numbx:
	R: 66

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P67:
	Numbers:
	Numbx:
	R: 67

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P68:
	Numbers:
	Numbx:
	R: 68

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P69:
	Numbers:
	Numbx:
	R: 69

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P70:
	Numbers:
	Numbx:
	R: 70

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P71:
	Numbers:
	Numbx:
	R: 71

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P72:
	Numbers:
	Numbx:
	R: 72

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P73:
	Numbers:
	Numbx:
	R: 73

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P74:
	Numbers:
	Numbx:
	R: 74

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P75:
	Numbers:
	Numbx:
	R: 75

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P76:
	Numbers:
	Numbx:
	R: 76

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P77:
	Numbers:
	Numbx:
	R: 77

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P78:
	Numbers:
	Numbx:
	R: 78

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P79:
	Numbers:
	Numbx:
	R: 79

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P80:
	Numbers:
	Numbx:
	R: 80

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P81:
	Numbers:
	Numbx:
	R: 81

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P82:
	Numbers:
	Numbx:
	R: 82

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P83:
	Numbers:
	Numbx:
	R: 83

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P84:
	Numbers:
	Numbx:
	R: 84

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P85:
	Numbers:
	Numbx:
	R: 85

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P86:
	Numbers:
	Numbx:
	R: 86

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P87:
	Numbers:
	Numbx:
	R: 87

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P88:
	Numbers:
	Numbx:
	R: 88

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P89:
	Numbers:
	Numbx:
	R: 89

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P90:
	Numbers:
	Numbx:
	R: 90

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P91:
	Numbers:
	Numbx:
	R: 91

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P92:
	Numbers:
	Numbx:
	R: 92

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P93:
	Numbers:
	Numbx:
	R: 93

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P94:
	Numbers:
	Numbx:
	R: 94

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P95:
	Numbers:
	Numbx:
	R: 95

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P96:
	Numbers:
	Numbx:
	R: 96

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P97:
	Numbers:
	Numbx:
	R: 97

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P98:
	Numbers:
	Numbx:
	R: 98

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P99:
	Numbers:
	Numbx:
	R: 99

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P100:
	Numbers:
	Numbx:
	R: 100

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P101:
	Numbers:
	Numbx:
	R: 101

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P102:
	Numbers:
	Numbx:
	R: 102

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P103:
	Numbers:
	Numbx:
	R: 103

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P104:
	Numbers:
	Numbx:
	R: 104

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P105:
	Numbers:
	Numbx:
	R: 105

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P106:
	Numbers:
	Numbx:
	R: 106

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P107:
	Numbers:
	Numbx:
	R: 107

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P108:
	Numbers:
	Numbx:
	R: 108

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P109:
	Numbers:
	Numbx:
	R: 109

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P110:
	Numbers:
	Numbx:
	R: 110

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P111:
	Numbers:
	Numbx:
	R: 111

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P112:
	Numbers:
	Numbx:
	R: 112

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P113:
	Numbers:
	Numbx:
	R: 113

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P114:
	Numbers:
	Numbx:
	R: 114

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P115:
	Numbers:
	Numbx:
	R: 115

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P116:
	Numbers:
	Numbx:
	R: 116

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P117:
	Numbers:
	Numbx:
	R: 117

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P118:
	Numbers:
	Numbx:
	R: 118

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P119:
	Numbers:
	Numbx:
	R: 119

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P120:
	Numbers:
	Numbx:
	R: 120

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P121:
	Numbers:
	Numbx:
	R: 121

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P122:
	Numbers:
	Numbx:
	R: 122

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P123:
	Numbers:
	Numbx:
	R: 123

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P124:
	Numbers:
	Numbx:
	R: 124

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P125:
	Numbers:
	Numbx:
	R: 125

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P126:
	Numbers:
	Numbx:
	R: 126

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P127:
	Numbers:
	Numbx:
	R: 127

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P128:
	Numbers:
	Numbx:
	R: 128

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P129:
	Numbers:
	Numbx:
	R: 129

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P130:
	Numbers:
	Numbx:
	R: 130

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P131:
	Numbers:
	Numbx:
	R: 131

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P132:
	Numbers:
	Numbx:
	R: 132

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P133:
	Numbers:
	Numbx:
	R: 133

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P134:
	Numbers:
	Numbx:
	R: 134

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P135:
	Numbers:
	Numbx:
	R: 135

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P136:
	Numbers:
	Numbx:
	R: 136

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P137:
	Numbers:
	Numbx:
	R: 137

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P138:
	Numbers:
	Numbx:
	R: 138

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P139:
	Numbers:
	Numbx:
	R: 139

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P140:
	Numbers:
	Numbx:
	R: 140

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P141:
	Numbers:
	Numbx:
	R: 141

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P142:
	Numbers:
	Numbx:
	R: 142

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P143:
	Numbers:
	Numbx:
	R: 143

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P144:
	Numbers:
	Numbx:
	R: 144

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P145:
	Numbers:
	Numbx:
	R: 145

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P146:
	Numbers:
	Numbx:
	R: 146

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P147:
	Numbers:
	Numbx:
	R: 147

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P148:
	Numbers:
	Numbx:
	R: 148

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P149:
	Numbers:
	Numbx:
	R: 149

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P150:
	Numbers:
	Numbx:
	R: 150

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P151:
	Numbers:
	Numbx:
	R: 151

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P152:
	Numbers:
	Numbx:
	R: 152

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P153:
	Numbers:
	Numbx:
	R: 153

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P154:
	Numbers:
	Numbx:
	R: 154

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P155:
	Numbers:
	Numbx:
	R: 155

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P156:
	Numbers:
	Numbx:
	R: 156

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P157:
	Numbers:
	Numbx:
	R: 157

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P158:
	Numbers:
	Numbx:
	R: 158

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P159:
	Numbers:
	Numbx:
	R: 159

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P160:
	Numbers:
	Numbx:
	R: 160

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P161:
	Numbers:
	Numbx:
	R: 161

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P162:
	Numbers:
	Numbx:
	R: 162

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P163:
	Numbers:
	Numbx:
	R: 163

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P164:
	Numbers:
	Numbx:
	R: 164

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P165:
	Numbers:
	Numbx:
	R: 165

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P166:
	Numbers:
	Numbx:
	R: 166

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P167:
	Numbers:
	Numbx:
	R: 167

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P168:
	Numbers:
	Numbx:
	R: 168

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P169:
	Numbers:
	Numbx:
	R: 169

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P170:
	Numbers:
	Numbx:
	R: 170

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P171:
	Numbers:
	Numbx:
	R: 171

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P172:
	Numbers:
	Numbx:
	R: 172

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P173:
	Numbers:
	Numbx:
	R: 173

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P174:
	Numbers:
	Numbx:
	R: 174

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P175:
	Numbers:
	Numbx:
	R: 175

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P176:
	Numbers:
	Numbx:
	R: 176

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P177:
	Numbers:
	Numbx:
	R: 177

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P178:
	Numbers:
	Numbx:
	R: 178

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P179:
	Numbers:
	Numbx:
	R: 179

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P180:
	Numbers:
	Numbx:
	R: 180

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P181:
	Numbers:
	Numbx:
	R: 181

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P182:
	Numbers:
	Numbx:
	R: 182

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P183:
	Numbers:
	Numbx:
	R: 183

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P184:
	Numbers:
	Numbx:
	R: 184

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P185:
	Numbers:
	Numbx:
	R: 185

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P186:
	Numbers:
	Numbx:
	R: 186

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P187:
	Numbers:
	Numbx:
	R: 187

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P188:
	Numbers:
	Numbx:
	R: 188

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P189:
	Numbers:
	Numbx:
	R: 189

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P190:
	Numbers:
	Numbx:
	R: 190

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P191:
	Numbers:
	Numbx:
	R: 191

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P192:
	Numbers:
	Numbx:
	R: 192

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P193:
	Numbers:
	Numbx:
	R: 193

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P194:
	Numbers:
	Numbx:
	R: 194

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P195:
	Numbers:
	Numbx:
	R: 195

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P196:
	Numbers:
	Numbx:
	R: 196

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P197:
	Numbers:
	Numbx:
	R: 197

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P198:
	Numbers:
	Numbx:
	R: 198

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P199:
	Numbers:
	Numbx:
	R: 199

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P200:
	Numbers:
	Numbx:
	R: 200

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P201:
	Numbers:
	Numbx:
	R: 201

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P202:
	Numbers:
	Numbx:
	R: 202

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P203:
	Numbers:
	Numbx:
	R: 203

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P204:
	Numbers:
	Numbx:
	R: 204

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P205:
	Numbers:
	Numbx:
	R: 205

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P206:
	Numbers:
	Numbx:
	R: 206

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P207:
	Numbers:
	Numbx:
	R: 207

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P208:
	Numbers:
	Numbx:
	R: 208

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P209:
	Numbers:
	Numbx:
	R: 209

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P210:
	Numbers:
	Numbx:
	R: 210

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P211:
	Numbers:
	Numbx:
	R: 211

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P212:
	Numbers:
	Numbx:
	R: 212

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P213:
	Numbers:
	Numbx:
	R: 213

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P214:
	Numbers:
	Numbx:
	R: 214

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P215:
	Numbers:
	Numbx:
	R: 215

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P216:
	Numbers:
	Numbx:
	R: 216

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P217:
	Numbers:
	Numbx:
	R: 217

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P218:
	Numbers:
	Numbx:
	R: 218

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P219:
	Numbers:
	Numbx:
	R: 219

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P220:
	Numbers:
	Numbx:
	R: 220

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P221:
	Numbers:
	Numbx:
	R: 221

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P222:
	Numbers:
	Numbx:
	R: 222

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P223:
	Numbers:
	Numbx:
	R: 223

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P224:
	Numbers:
	Numbx:
	R: 224

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P225:
	Numbers:
	Numbx:
	R: 225

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P226:
	Numbers:
	Numbx:
	R: 226

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P227:
	Numbers:
	Numbx:
	R: 227

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P228:
	Numbers:
	Numbx:
	R: 228

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P229:
	Numbers:
	Numbx:
	R: 229

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P230:
	Numbers:
	Numbx:
	R: 230

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P231:
	Numbers:
	Numbx:
	R: 231

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P232:
	Numbers:
	Numbx:
	R: 232

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P233:
	Numbers:
	Numbx:
	R: 233

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P234:
	Numbers:
	Numbx:
	R: 234

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P235:
	Numbers:
	Numbx:
	R: 235

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P236:
	Numbers:
	Numbx:
	R: 236

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P237:
	Numbers:
	Numbx:
	R: 237

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P238:
	Numbers:
	Numbx:
	R: 238

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P239:
	Numbers:
	Numbx:
	R: 239

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P240:
	Numbers:
	Numbx:
	R: 240

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P241:
	Numbers:
	Numbx:
	R: 241

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P242:
	Numbers:
	Numbx:
	R: 242

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P243:
	Numbers:
	Numbx:
	R: 243

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P244:
	Numbers:
	Numbx:
	R: 244

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P245:
	Numbers:
	Numbx:
	R: 245

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P246:
	Numbers:
	Numbx:
	R: 246

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P247:
	Numbers:
	Numbx:
	R: 247

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P248:
	Numbers:
	Numbx:
	R: 248

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P249:
	Numbers:
	Numbx:
	R: 249

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P250:
	Numbers:
	Numbx:
	R: 250

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P251:
	Numbers:
	Numbx:
	R: 251

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P252:
	Numbers:
	Numbx:
	R: 252

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P253:
	Numbers:
	Numbx:
	R: 253

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P254:
	Numbers:
	Numbx:
	R: 254

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P255:
	Numbers:
	Numbx:
	R: 255

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P256:
	Numbers:
	Numbx:
	R: 256

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P257:
	Numbers:
	Numbx:
	R: 257

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P258:
	Numbers:
	Numbx:
	R: 258

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P259:
	Numbers:
	Numbx:
	R: 259

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P260:
	Numbers:
	Numbx:
	R: 260

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P261:
	Numbers:
	Numbx:
	R: 261

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P262:
	Numbers:
	Numbx:
	R: 262

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P263:
	Numbers:
	Numbx:
	R: 263

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P264:
	Numbers:
	Numbx:
	R: 264

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P265:
	Numbers:
	Numbx:
	R: 265

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P266:
	Numbers:
	Numbx:
	R: 266

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P267:
	Numbers:
	Numbx:
	R: 267

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P268:
	Numbers:
	Numbx:
	R: 268

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P269:
	Numbers:
	Numbx:
	R: 269

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P270:
	Numbers:
	Numbx:
	R: 270

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P271:
	Numbers:
	Numbx:
	R: 271

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P272:
	Numbers:
	Numbx:
	R: 272

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P273:
	Numbers:
	Numbx:
	R: 273

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P274:
	Numbers:
	Numbx:
	R: 274

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P275:
	Numbers:
	Numbx:
	R: 275

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P276:
	Numbers:
	Numbx:
	R: 276

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P277:
	Numbers:
	Numbx:
	R: 277

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P278:
	Numbers:
	Numbx:
	R: 278

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P279:
	Numbers:
	Numbx:
	R: 279

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P280:
	Numbers:
	Numbx:
	R: 280

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P281:
	Numbers:
	Numbx:
	R: 281

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

	P282:
	Numbers:
	Numbx:
	R: 282

	PageText:
	R: Page

	ProductName:
	L: Product Knowledge Template

	Version: Version 5 Release 14

